Начертили отрезок mn длиной 9 см и две окружности

Начертили отрезок MN длиной 8 см и две окружности радиусами 4 см и 5 см с центрами в концах этого отрезка?

Математика | 5 — 9 классы

Начертили отрезок MN длиной 8 см и две окружности радиусами 4 см и 5 см с центрами в концах этого отрезка.

Окружности пересекают отрезок MN в точках A и B.

Найдите длину отрезка AB.

Начертили отрезок mn длиной 9 см и две окружности

там типа 5 см — 4 см = 1 см.

Начертили отрезок mn длиной 9 см и две окружности

Содержание
  1. Нарисуйте окружность с центром в точке О и радиусом 3 сантиметров 8 миллиметров Нарисуйте отрезок так чтобы он проходил через центр окружности пересекает в точках Е и F Как называются отрезки и опреде?
  2. НАЧЕРТИ ОКРУЖНОСТЬ, ДЛИНА РАДИУСА КОТОРОЙ 2СМ 5ММ?
  3. Отрезок ао равен 16 см точка 0 является центром окружности диаметром 8 см точка с — точка пересечения отрезка ао и окружности найдите длину отрезка ас?
  4. Длина отрезка АВ равена 6 см, а радиус окружности с центром в точке А равен 4 см?
  5. Начертите отрезок CD, равным 5 см?
  6. Начертит две окружности с общим центром?
  7. Начерти Две окружности с помощью центром радиус большей окружности 4 см?
  8. Начерти отрезок AB длина 4 см поставь точку 0 на отрезке?
  9. Начерти отрезок AB длиной 4 см?
  10. Начерти отрезок AB длиной 4 см?
  11. Контрольные работы по математике 5 класс ФГОС УМК СМ Никольского
  12. Краткое описание документа:
  13. Дистанционное обучение как современный формат преподавания
  14. Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
  15. Математика: теория и методика преподавания в образовательной организации
  16. Дистанционные курсы для педагогов
  17. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  18. Материал подходит для УМК
  19. Другие материалы
  20. Вам будут интересны эти курсы:
  21. Оставьте свой комментарий
  22. Автор материала
  23. Дистанционные курсы для педагогов
  24. Подарочные сертификаты
  25. Начертили отрезок mn длиной 9 см и две окружности
  26. 📺 Видео

Видео:Отрезок, луч, прямаяСкачать

Отрезок, луч, прямая

Нарисуйте окружность с центром в точке О и радиусом 3 сантиметров 8 миллиметров Нарисуйте отрезок так чтобы он проходил через центр окружности пересекает в точках Е и F Как называются отрезки и опреде?

Нарисуйте окружность с центром в точке О и радиусом 3 сантиметров 8 миллиметров Нарисуйте отрезок так чтобы он проходил через центр окружности пересекает в точках Е и F Как называются отрезки и определите его длину.

Начертили отрезок mn длиной 9 см и две окружности

Видео:Радиус и диаметрСкачать

Радиус и диаметр

НАЧЕРТИ ОКРУЖНОСТЬ, ДЛИНА РАДИУСА КОТОРОЙ 2СМ 5ММ?

НАЧЕРТИ ОКРУЖНОСТЬ, ДЛИНА РАДИУСА КОТОРОЙ 2СМ 5ММ.

Проведи отрезок через центр окружности так, чтобы его концы оказались на этой окружности.

Измерь длину отрезка.

Начертили отрезок mn длиной 9 см и две окружности

Видео:Математика 5 класс. Отрезок. Длина отрезка. Сравнение отрезков. Единицы измеренияСкачать

Математика 5 класс. Отрезок. Длина отрезка.  Сравнение отрезков.  Единицы измерения

Отрезок ао равен 16 см точка 0 является центром окружности диаметром 8 см точка с — точка пересечения отрезка ао и окружности найдите длину отрезка ас?

Отрезок ао равен 16 см точка 0 является центром окружности диаметром 8 см точка с — точка пересечения отрезка ао и окружности найдите длину отрезка ас.

Начертили отрезок mn длиной 9 см и две окружности

Видео:Точка, прямая и отрезок. 1 часть. 7 класс.Скачать

Точка, прямая и отрезок. 1 часть. 7 класс.

Длина отрезка АВ равена 6 см, а радиус окружности с центром в точке А равен 4 см?

Длина отрезка АВ равена 6 см, а радиус окружности с центром в точке А равен 4 см.

Точку пересечения окружности и отрезка обозначили за С.

Чему равен отрезок СВ?

Начертили отрезок mn длиной 9 см и две окружности

Видео:5 класс, 2 урок, Отрезок. Длина отрезка. ТреугольникСкачать

5 класс, 2 урок, Отрезок. Длина отрезка. Треугольник

Начертите отрезок CD, равным 5 см?

Начертите отрезок CD, равным 5 см.

Проведите окружность с центром C и радиусом 3 см, а также другую окружность с центром D и радиусом 4 см.

Обозначьте точки пересечения окружностей буквами A и B.

Чему равны длинны отрезков AC, CB, DA и BD?

Начертили отрезок mn длиной 9 см и две окружности

Видео:Математика 1 класс. Как измерять длину отрезка? ВидеоурокиСкачать

Математика 1 класс. Как измерять длину отрезка? Видеоуроки

Начертит две окружности с общим центром?

Начертит две окружности с общим центром.

Радиус большой окружности 4 см а меньшей 4 см.

Проведи отрезок, пересекающий каждую из окружностей в двух точках.

Начертили отрезок mn длиной 9 см и две окружности

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Начерти Две окружности с помощью центром радиус большей окружности 4 см?

Начерти Две окружности с помощью центром радиус большей окружности 4 см.

Проведи отрезок пересекающий каждую из окружностей в 2 точках.

Начертили отрезок mn длиной 9 см и две окружности

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Начерти отрезок AB длина 4 см поставь точку 0 на отрезке?

Начерти отрезок AB длина 4 см поставь точку 0 на отрезке.

Переведи две окружности с центром в этой точке и радиусами равными отрезками 0А и 0В Запиши Чему равны радиусы этих окружностей Сколько получилось точек пересечения двух окружностей.

Начертили отрезок mn длиной 9 см и две окружности

Видео:ЛоманаяСкачать

Ломаная

Начерти отрезок AB длиной 4 см?

Начерти отрезок AB длиной 4 см.

Поставь точку О на отрезке.

Проведи две окружности с центром в этой точке и радиусами, равными отрезками ОА и OB.

Запиши, чему равны радиусы этих окружностей.

Сколько получилось точек пересечения двух окружностей?

Начертили отрезок mn длиной 9 см и две окружности

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Начерти отрезок AB длиной 4 см?

Начерти отрезок AB длиной 4 см.

Поставь точку O на отрезке.

Провели две окружности с центром в этой точке и радиусами, равными отрезкам OA и OB.

Запиши, чему равны радиусы этих окружностей.

Сколько получилось точек пересечения двух окружностей?

Вы находитесь на странице вопроса Начертили отрезок MN длиной 8 см и две окружности радиусами 4 см и 5 см с центрами в концах этого отрезка? из категории Математика. Уровень сложности вопроса рассчитан на учащихся 5 — 9 классов. На странице можно узнать правильный ответ, сверить его со своим вариантом и обсудить возможные версии с другими пользователями сайта посредством обратной связи. Если ответ вызывает сомнения или покажется вам неполным, для проверки найдите ответы на аналогичные вопросы по теме в этой же категории, или создайте новый вопрос, используя ключевые слова: введите вопрос в поисковую строку, нажав кнопку в верхней части страницы.

Видео:Математика 5 класс (Урок№21 - Прямая, луч, отрезок.)Скачать

Математика 5 класс (Урок№21 - Прямая, луч, отрезок.)

Контрольные работы по математике 5 класс ФГОС УМК СМ Никольского

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов

Сертификат и скидка на обучение каждому участнику

К онтрольная работа № 1 по математике по теме

«Сравнение, сложение и вычитание натуральных чисел»

а) 20 000 и 19 999; б) 1 536 819 и 1 536 819; в) 588 711 и 588 811.

2. Вычислите: а) 62 932 + 18 798; б) 83 521 – 78 973.

а) 51 + 902 + 49; б) 59 · 320 + 59 · 680; в) 27 · 698 – 27 · 688; г) 8 · 397 · 125.

4. Решите уравнение: а) х + 243 = 1099; б) 498 – х = 79.

5. В первый день туристы прошли 28 км, во второй – на 3 км меньше, чем в первый, а в третий день они проехали на поезде в 4 раза больше, чем за первые два дня прошли пешком. Сколько километров туристы преодолели за эти три дня?

6. Замените звёздочки цифрами так, чтобы вычисления столбиком были верными:

а) 18 888 и 20 000; б) 9 056 272 и 9 056 272; в) 159 482 и 159 483.

2. Вычислите: а) 48 563 + 47 982; б) 84 535 – 74 696.

а) 53 + 971 + 47; б) 71 · 750 + 71 · 250; в) 84 · 354 – 84 · 344; г) 125 · 387 · 8.

4. Решите уравнение: а) 576 + х = 1084; б) х – 457 = 379.

5. На тетради в клетку потратили 39 р., на тетради в линейку – на 5 р. меньше, а на учебники потратили в 3 раза больше денег, чем на все тетради, вместе взятые. Сколько денег потратили на тетради и учебники?

6. Замените звёздочки цифрами так, чтобы вычисления столбиком были верными:

К онтрольная работа № 2 по математике по теме

«Умножение и деление натуральных чисел»

а) 348 · 607; б) 62 800 : 40; в) 24 004 : 34.

2. Выполните действия:

а) 72 + 468 : (83 · 9 – 729); б) 20 385 : (723 – 720) 3 .

3. Найдите число х , для которого:

а) х : 5 = 9 (ост. 3); б) 64 : х = 6 (ост. 4).

5. а) Алеша посадил в 3 раза больше деревьев, чем Саша, а вместе они посадили 24 дерева. Сколько деревьев посадил каждый?

б) Маша знает в 4 раза больше английских слов, чем Даша. А Даша знает на 36 английских слов меньше, чем Маша. Сколько английских слов знает каждая девочка?

6. Замените звёздочки цифрами так, чтобы вычисления столбиком были верными:

а) 521 · 706; б) 61 600 : 40; в) 15 428 : 38.

2. Выполните действия:

а) 24 + 516 : (256 – 4 · 61); б) 9 252 : (638 – 632) 2 .

3. Найдите число х , для которого:

а) х : 6 = 8 (ост. 1); б) 84 : х = 9 (ост. 3).

5. а) Коля надул в 4 раза больше шариков, чем Саша, а вместе они надули 20 шариков. Сколько шариков надул каждый?

б) Алеша решил в 3 раза больше задач, чем Боря. А Боря решил на 12 задач меньше, чем Алеша. Сколько задач решил каждый?

6. Замените звёздочки цифрами так, чтобы вычисления столбиком были верными:

К онтрольная работа № 3 по математике по теме

1. На прямой отметили 7 точек. Сколько образовалось лучей с началом в этих точках?

а) в сантиметрах: 5 м 65 см; 52 м 9 см; 45 дм;

б) в миллиметрах 13 м 13 см;

в) в дециметрах 87 000 мм;

г) в метрах 67 000 мм.

3. а) На координатном луче отметьте точки О (0), А (5), В (9), С (3).

б) Какую координату имеет точка D – середина отрезка ВС ?

в) Определите длину наименьшего из отрезков АС , ВС , С D .

4. На координатном луче отметьте точки О (0), В (5), и точку С так, чтобы расстояние ВС было равно 3. Сколько решений имеет задача?

5. Сумма двух чисел равна 999, а их разность равна 123. Найдите эти числа.

6. Постройте прямую CD и точку К , не лежащую на этой прямой. С помощью угольника и линейки начертите прямую KN , параллельную прямой CD .

1. На прямой отметили 6 точек. Сколько образовалось лучей с началом в этих точках?

а) в сантиметрах: 12 м 34 см; 15 м 6 см; 35 дм;

б) в миллиметрах 8 м 54 см;

в) в дециметрах 37 000 мм;

г) в метрах 73 000 мм.

3. а) На координатном луче отметьте точки О (0), А (2), В (5), С (10).

б) Какую координату имеет точка E – середина отрезка A С ?

в) Определите длину наибольшего из отрезков АС , ВС , С E .

4. На координатном луче отметьте точки О (0), В (8), и точку С так, чтобы расстояние ВС было равно 4. Сколько решений имеет задача?

5. Сумма двух чисел равна 888, а их разность равна 132. Найдите эти числа.

6. Постройте прямую AB и точку M , не лежащую на этой прямой. С помощью угольника и линейки начертите прямую MN , параллельную прямой AB .

Две окружности касаются внешним образом. Радиус первой окружности 3 см, а второй 2 см. Найдите расстояние между их центрами.

1) 1 см 2) 4 см 3) 5 см 4) другой ответ

Две окружности касаются внутренним образом. Радиус первой окружности 4 см, а второй 1 см. Найдите расстояние между их центрами.

1) 2 см 2) 3 см 3) 5 см 4) другой ответ

Радиусы двух окружностей равны 2 см и 6 см, а расстояние между их центрами равно 8 см. Сколько точек пересечения имеют окружности?

1) ни одной 2) одну 3) две 4) другой ответ

Начертили отрезок MN длиной 9 см и две окружности радиусами 4 см и 1 см с центрами в концах этого отрезка. Окружности пересекают отрезок MN в точках A и B . Найдите длину отрезка AB .

1) 3 см 2) 4 см 3) 5 см 4) определить невозможно

Какая из данных величин соответствует какому углу?

1) 56° 2) 15°33′ 3) 89°59′ 4) 90°9′

За какое время часовая стрелка повернется на угол в 90°?

1) за 9 ч 2) за 3 ч 3) за 6 ч 4) другой ответ

Выполните сложение: 14°56′ + 51°53′.

1) 65°9′ 2) 66°9′ 3) 66°49′ 4) другой ответ

Выполните вычитание: 59°3′ – 38°48′.

1) 19°45′ 2) 20°15′ 3) 21°15′ 4) другой ответ

Луч OC делит прямой угол AOB так, что угол AOC на 25° больше угла BOC . Найдите величину угла BOC .

1) 7 5° 2) 32 ° 30 ‘ 3) 53 ° 30 ‘ 4) другой ответ

Луч OC делит развернутый угол AOB так, что угол AOC на 45° меньше угла BOC . Найдите величину угла А OC .

1) 135° 2) 67° 30 ‘ 3) 11 3 ° 30 ‘ 4) другой ответ

Периметр равнобедренного треугольника равен 32 см, а одна из сторон равна 18 см. Найдите две другие стороны.

2) 7 см и 18 см 3) такого треугольника не существует 4) другой ответ

Две стороны равнобедренного треугольника равны соответственно 5 см и 10 см. Чему равна третья сторона?

3) такого треугольника не существует 4) другой ответ

Стороны треугольника АВС равны 8 см и 10 см, а периметр 27 см. Какое из данных утверждений верно?

1) треугольник АВС разносторонний

2) треугольник АВС равносторонний

3) треугольник АВС равнобедренный

4) такого треугольника не существует

Стороны треугольника АВС равны 8 см и 6 см, а периметр 29 см. Какое из данных утверждений верно?

1) треугольник АВС разносторонний

2) треугольник АВС равносторонний

3) треугольник АВС равнобедренный

4) такого треугольника не существует

Какой из перечисленных треугольников можно построить?

1) треугольник со сторонами 1 см, 1 см и 3 см

2) треугольник со сторонами 2 см, 6 см и 3 см

3) треугольник со сторонами 5 см, 4 см и 8 см

4) треугольник со сторонами 4 см, 3 см и 1 см

Периметр прямоугольника равен 120 см, а длина на 14 см больше ширины. Найдите его ширину.

1) 39 см 2) 23 см 3) 9 см 4) другой ответ

Длину прямоугольника уменьшили на 6 дм, а ширину увеличили на 9 дм. Как изменился периметр?

1) увеличился на 3 дм 2) уменьшился на 6 дм

3) увеличился на 6 дм 4) другой ответ

Длину прямоугольника увеличили на 1 дм, а ширину уменьшили на 5 дм. Как изменился периметр?

1) увеличился на 8 дм 2) уменьшился на 8 дм

3) уменьшился на 4 дм 4) другой ответ

Стороны прямоугольника равны 9 см и 3 см. Найдите сторону ромба, периметр которого равен периметру данного прямоугольника.

1) 12 см 2) 6 см 3) 3 см 4) другой ответ

Периметр треугольника MNP равен 25 см, периметр треугольника MKP равен 20 см, а периметр четырехугольника MNPK равен 27 см. Чему равна длина отрезка MP ? Начертили отрезок mn длиной 9 см и две окружности

1) 9 см 2) 10 см 3) 18 см 4) другой ответ

Периметр прямоугольника равен 72 см, а ширина равна 15 см. Найдите площадь прямоугольника.

1) 325 см 2 2) 315 см 2 3) 855 см 2 4) другой ответ

Найдите периметр прямоугольника, площадь которого равна 247 см 2 , а ширина равна 13 см.

1) 64 см 2) 32 см 3) 44 см 4) другой ответ

Площадь квадрата равна см. Чему равна его сторона?

Найдите площадь четырехугольника ABCD . Начертили отрезок mn длиной 9 см и две окружности

1) 20 см 2 2) 30 см 2 3) 42 см 2 4) другой ответ

К онтрольная работа № 4 по математике по теме

1. Длина и ширина участка прямоугольной формы 24 м и 75 м. Вычислите площадь участка и выразите ее в арах.

2. Площадь пола комнаты 15 м 2 , а её высота 4 м. Каков объем комнаты?

а) в квадратных дециметрах 12 м 2 ;

б) в квадратных метрах 200 000 см 2 ;

в) в кубических сантиметрах 13 дм 3 ;

г) в кубических метрах 3 000 000 см 3 .

4. Два пешехода вышли одновременно навстречу друг другу из двух сёл, расстояние между которыми 30 км. Скорость одного пешехода 6 км/ч, скорость другого 4 км/ч. Через сколько часов они встретятся?

5. Скорость лодки по течению реки 19 км/ч, а против течения 13 км/ч. Какова скорость течения реки?

6. Вычислите: а) 378 + 4359; б) 4325 – 3179; в) 235 · 408; г) 7511 : 37.

1. Длина и ширина участка прямоугольной формы 44 м и 25 м. Вычислите площадь участка и выразите ее в арах.

2. Площадь пола комнаты 21 м 2 , а её высота 3 м. Каков объем комнаты?

а) в квадратных дециметрах 25 м 2 ;

б) в квадратных метрах 60 000 см 2 ;

в) в кубических сантиметрах 14 дм 3 ;

г) в кубических метрах 4 000 000 см 3 .

4. Два пешехода вышли одновременно навстречу друг другу из двух сёл, расстояние между которыми 27 км. Скорость одного пешехода 5 км/ч, скорость другого 4 км/ч. Через сколько часов они встретятся?

5. Скорость лодки по течению реки 17 км/ч, а против течения 11 км/ч. Какова скорость течения реки?

6. Вычислите: а) 487 + 3768; б) 6435 – 4519; в) 216 · 308; г) 7956 : 39.

К онтрольная работа № 5 по математике по теме

«Делимость натуральных чисел»

1. а) Какие из чисел: 207, 321, 53, 954 – делятся на 3?

б) Какие из чисел: 120, 348, 554, 255 – делятся на 5?

2. Разложите на простые множители число 750.

4. Некто записал пятизначное число, делящееся на 9. Переставил несколько цифр и получил новое число. Делится ли это новое число на 9? Почему?

5. Какую цифру можно поставить вместо звездочки, чтобы число 635* делилось на 2, но не делилось на 4? Рассмотрите все возможные случаи.

6. Сколько делителей имеет число 300?

1. а) Какие из чисел: 501, 432, 83, 945 – делятся на 3?

б) Какие из чисел: 940, 438, 545, 209 – делятся на 5?

2. Разложите на простые множители число 720.

4. Некто записал шестизначное число, делящееся на 9. Переставил несколько цифр и получил новое число. Делится ли это новое число на 9? Почему?

5. Какую цифру можно поставить вместо звездочки, чтобы число 834* делилось на 2, но не делилось на 4? Рассмотрите все возможные случаи.

6. Сколько делителей имеет число 450?

С амостоятельная работа по математике по теме

1. Сократите дробь: а) ; б) ; в) ; г) ; д) .

2. Сравните дроби: а) и ; б) и ; в) и ; г) и .

3. а) Расположите числа , , , 1 в порядке возрастания.

б) Расположите числа , , , 1 в порядке убывания.

4. Вычислите: а) ; б) ; в) ; г) ; д) ;

е) ; ж) ; з) ; и) ; к) ; л) .

5. Пройдено намеченного пути, и осталось пройти 12 км. Сколько километров намечено пройти?

6. У девочки было 36 р. Она потратила этой суммы и остатка. Сколько денег у нее осталось?

1. Сократите дробь: а) ; б) ; в) ; г) ; д) .

2. Сравните дроби: а) и ; б) и ; в) и ; г) и .

3. а) Расположите числа , , , 1 в порядке возрастания.

б) Расположите числа , , , 1 в порядке убывания.

4. Вычислите: а) ; б) ; в) ; г) ; д) ;

е) ; ж) ; з) ; и) ; к) ; л) .

5. Продано имевшихся конфет, и осталось продать 30 кг. Сколько килограммов конфет было до продажи?

6. В секции 48 спортсменов, их числа приняли участие в соревнованиях, а участников соревнований получили призы. Сколько спортсменов из секции получили призы?

К онтрольная работа № 6 по математике по теме

«Сравнение, сложение и вычитание обыкновенных дробей»

1. Сократите дробь: а) ; б) ; в) .

2. Сравните дроби: а) и ; б) и ; в) и ; г) и .

3. Вычислите: а) ; б) ; в) ; г) ;

4. Посадили 56 деревьев, посаженных деревьев прижились. Сколько деревьев не прижилось?

5. Учитель проверил 21 тетрадь, что составило всех тетрадей. Сколько тетрадей осталось проверить учителю?

6. Известно, что класса сходили в кино, – на выставку. Сколько учащихся в классе, если их больше 25, но меньше 35?

1. Сократите дробь: а) ; б) ; в) .

2. Сравните дроби: а) и ; б) и ; в) и ; г) и .

3. Вычислите: а) ; б) ; в) ; г) ;

4. Турист должен пройти 27 км, он прошел всего пути. Сколько километров ему осталось пройти?

5. Из посаженных деревьев прижилось 56, что составило посаженных деревьев. Сколько деревьев не прижилось?

6. Известно, что класса сходили в кино, – на выставку. Сколько учащихся в классе, если их больше 20, но меньше 30?

С амостоятельная работа по математике по теме

«Сложение и вычитание смешанных дробей»

1. Вычислите: а) ; б) ; в) ; г) ; д) ; е) ; ж) ; з) ; и) ; к) ; л) 4; м) .

2. Выполните действия: а) ; б) ; в) ; г) .

1. Вычислите: а) ; б) ; в) ; г) ; д) ; е) ; ж) ; з) ; и) ; к) ; л) 3; м) .

2. Выполните действия: а) ; б) ; в) ; г) .

К онтрольная работа № 8 по математике по теме

«Действия над смешанными дробями»

1. Вычислите: а) ; б) ; в) .

2. Вычислите: а) ; б) ; в) .

4. Одна бригада может выполнить задание за 40 дней, а другая – за 60 дней. За сколько дней они выполнят задание при совместной работе?

5. Первая труба может наполнить бассейн за 25 мин, а вторая – за 15 мин. Наполнится ли бассейн за 10 мин, если открыть обе трубы?

1. Вычислите: а) ; б) ; в) .

2. Вычислите: а) ; б) ; в) .

4. Первая труба может наполнить бассейн за 24 мин, а вторая – за 40 мин. За сколько минут наполнят бассейн обе эти трубы?

5. Одна бригада может выполнить задание за 40 дней, а другая – за 50 дней. Хватит ли им 22 дней для выполнения того же задания при совместной работе?

И тоговая контрольная работа по математике за курс 5 класса

1. Сравните числа: а) и ; б) и ; в) и .

2. Какая дробь является неправильной: а) ; б) ; в) ; г) .

4. От куска провода отрезали 12 м, что составляет всего куска. Сколько метров провода было в куске?

5. Вычислите: а) ; б) ; в) .

6. Площадь поля 500 га. Горохом засеяли поля. Какую площадь поля засеяли горохом?

7. Начертите два угла – острый и тупой. Обозначьте и измерьте их. Запишите результаты измерений.

8. Найдите значение выражения .

9. Найдите значение выражения наиболее удобным способом.

1. Выполните действия: .

2. Собственная скорость лодки км/ч, а скорость течения км/ч. Лодка проплыла 2 ч против течения и 2 ч по течению реки. Какой путь проплыла лодка за это время?

1. Сравните числа: а) и ; б) и ; в) и .

2. Какая дробь является неправильной: а) ; б) ; в) ; г) .

4. От куска провода израсходовали 16 м, что составляет куска. Сколько метров провода было в куске первоначально?

5. Вычислите: а) ; б) ; в) .

6. В библиотеке было 900 книг. Детские книги составляли всех книг. Сколько детских книг было в библиотеке?

7. Начертите два угла – острый и тупой. Обозначьте и измерьте их. Запишите результаты измерений.

8. Найдите значение выражения .

9. Найдите значение выражения наиболее удобным способом.

1. Выполните действия: .

2. Собственная скорость лодки км/ч, а скорость течения км/ч. Лодка проплыла 3 ч против течения и 3 ч по течению реки. Какой путь проплыла лодка за это время?

Краткое описание документа:

Контрольные работы по математике в 5 классе, занимающихся по учебнику: Никольский С.М., Потапов М.К., Решетни­ков Н.Н., Шевкин А.В.]. 13-е изд. М.: Просвещение, 2014. Конспект соответствует требованиям ФГОС, и разработан к авторской программе курса Математика. Сборник рабочих программ. 5-6 классы: пособие для учителей общеобразовательных учреждений / сост. Т.А. Бурмистрова. – М.: Просвещение, 2016. — 80 с.

Начертили отрезок mn длиной 9 см и две окружности

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 988 человек из 78 регионов

Начертили отрезок mn длиной 9 см и две окружности

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 310 человек из 68 регионов

Начертили отрезок mn длиной 9 см и две окружности

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 673 человека из 75 регионов

Ищем педагогов в команду «Инфоурок»

Видео:7 класс, 7 урок, Длина отрезкаСкачать

7 класс, 7 урок, Длина отрезка

Дистанционные курсы для педагогов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 536 471 материал в базе

Материал подходит для УМК

Начертили отрезок mn длиной 9 см и две окружности

«Математика», Никольский С.М., Потапов М.К., Решетников Н.Н. и др.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Начертили отрезок mn длиной 9 см и две окружности

  • 31.05.2018
  • 1263
  • 20

Начертили отрезок mn длиной 9 см и две окружности

  • 31.05.2018
  • 595
  • 7

Начертили отрезок mn длиной 9 см и две окружности

  • 26.05.2018
  • 938
  • 2

Начертили отрезок mn длиной 9 см и две окружности

  • 26.05.2018
  • 505
  • 8

Начертили отрезок mn длиной 9 см и две окружности

  • 22.05.2018
  • 739
  • 20

Начертили отрезок mn длиной 9 см и две окружности

  • 17.05.2018
  • 608
  • 0

Начертили отрезок mn длиной 9 см и две окружности

  • 15.05.2018
  • 7238
  • 13

Начертили отрезок mn длиной 9 см и две окружности

  • 09.05.2018
  • 893
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 31.05.2018 101116
  • DOCX 53 кбайт
  • 2799 скачиваний
  • Рейтинг: 4 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Изетуллаев Юнус Линурович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Начертили отрезок mn длиной 9 см и две окружности

  • На сайте: 4 года и 4 месяца
  • Подписчики: 3
  • Всего просмотров: 1100457
  • Всего материалов: 759

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Видео:Деление отрезка на равные части, перпендикуляр к прямой.Урок 4.(Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Деление отрезка на равные части, перпендикуляр к прямой.Урок 4.(Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Начертили отрезок mn длиной 9 см и две окружности

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Начертили отрезок mn длиной 9 см и две окружности

Новые курсы: школьные службы примирения, детская журналистика и другие

Время чтения: 15 минут

Начертили отрезок mn длиной 9 см и две окружности

Ставропольских школьников с 1 по 8 класс перевели на дистанционное обучение

Время чтения: 2 минуты

Начертили отрезок mn длиной 9 см и две окружности

Студенты на Северном Кавказе бесплатно подготовят к ЕГЭ сельских школьников

Время чтения: 1 минута

Начертили отрезок mn длиной 9 см и две окружности

Путин поручил обучать педагогов работе с девиантным поведением

Время чтения: 1 минута

Начертили отрезок mn длиной 9 см и две окружности

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Начертили отрезок mn длиной 9 см и две окружности

В Госдуме предложили доплачивать учителям за работу в классах, где выявлен ковид

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Начертили отрезок mn длиной 9 см и две окружности

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.^$$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям — подобны.

$$ 4.^$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

Начертили отрезок mn длиной 9 см и две окружности

$$ 4.^$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.^$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.^$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.^$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

Начертили отрезок mn длиной 9 см и две окружности

$$ 4.^$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.^$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

Начертили отрезок mn длиной 9 см и две окружности

$$ 4.^$$.В равнобокой трапеции `d^2=c^2+ab`, где `d` — диагональ, `c` — боковая сторона, `a` и `b` основания.

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.^$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.^$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Докажем, например, утверждение $$ 4.^$$ .

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«||«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

`d^2=c^2+ab`.

Начертили отрезок mn длиной 9 см и две окружности

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4.^$$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` — его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` — её точка пересечения с прямой `BC` (рис. 30б).

Начертили отрезок mn длиной 9 см и две окружности

По построению `ACKD` — параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`

(т. к. угол `BDK` — это угол между диагоналями трапеции).

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Пусть `BC=a`, `AD=b`, и пусть `h` — высота трапеции (рис. 31). По свойству $$ 4.^$$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Начертили отрезок mn длиной 9 см и две окружности

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Начертили отрезок mn длиной 9 см и две окружности

Найти радиус окружности, описанной около этой трапеции.

Трапеция равнобокая, по свойству $$ 4.^$$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4.^$$

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.^$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

$$ 4.^$$. Если `S_1` и `S_2` — площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.

$$ 4.^$$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` — какая-то сторона (или диагональ трапеции), `alpha` — смотрящий на неё вписанный угол.

📺 Видео

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Отрезок. Длина отрезка. Ломаная. 5 классСкачать

Отрезок. Длина отрезка. Ломаная. 5 класс

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Деление окружности на 3, 4, 5, 6 и 7 равных частейСкачать

Деление окружности на 3, 4, 5, 6 и 7 равных частей
Поделиться или сохранить к себе: