На пересечении чего лежит центр описанной окружности треугольника

Окружность, описанная около треугольника

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Определение окружности, описанной около треугольника

Определение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1).

На пересечении чего лежит центр описанной окружности треугольника

При этом треугольник называется треугольником вписанным в окружность .

Видео:Диагностическая работа-1 в формате ОГЭ. Задача-25Скачать

Диагностическая работа-1 в формате ОГЭ. Задача-25

Теорема об окружности, описанной около треугольника

Теорема 1. Около любого треугольника можно описать окружность.

На пересечении чего лежит центр описанной окружности треугольника

Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC.На пересечении чего лежит центр описанной окружности треугольника

Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника.

Замечание 1. Около любого треугольника можно описать только одну окружность.

Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают.На пересечении чего лежит центр описанной окружности треугольника

Видео:2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

На пересечении чего лежит центр описанной окружности треугольникаСерединный перпендикуляр к отрезку
На пересечении чего лежит центр описанной окружности треугольникаОкружность описанная около треугольника
На пересечении чего лежит центр описанной окружности треугольникаСвойства описанной около треугольника окружности. Теорема синусов
На пересечении чего лежит центр описанной окружности треугольникаДоказательства теорем о свойствах описанной около треугольника окружности

На пересечении чего лежит центр описанной окружности треугольника

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

На пересечении чего лежит центр описанной окружности треугольника

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

На пересечении чего лежит центр описанной окружности треугольника

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

На пересечении чего лежит центр описанной окружности треугольника

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

На пересечении чего лежит центр описанной окружности треугольника

На пересечении чего лежит центр описанной окружности треугольника

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

На пересечении чего лежит центр описанной окружности треугольника

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

На пересечении чего лежит центр описанной окружности треугольника

На пересечении чего лежит центр описанной окружности треугольника

Полученное противоречие и завершает доказательство теоремы 2

Видео:Где лежит центр описанной окружности? 1 задание ЕГЭ ПрофильСкачать

Где лежит центр описанной окружности? 1 задание ЕГЭ Профиль

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

На пересечении чего лежит центр описанной окружности треугольника

Видео:88 Центр описанной окружности треугольникаСкачать

88 Центр описанной окружности треугольника

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

На пересечении чего лежит центр описанной окружности треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

На пересечении чего лежит центр описанной окружности треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
На пересечении чего лежит центр описанной окружности треугольникаВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаНа пересечении чего лежит центр описанной окружности треугольникаОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиНа пересечении чего лежит центр описанной окружности треугольникаЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиНа пересечении чего лежит центр описанной окружности треугольникаЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовНа пересечении чего лежит центр описанной окружности треугольника
Площадь треугольникаНа пересечении чего лежит центр описанной окружности треугольника
Радиус описанной окружностиНа пересечении чего лежит центр описанной окружности треугольника
Серединные перпендикуляры к сторонам треугольника
На пересечении чего лежит центр описанной окружности треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаНа пересечении чего лежит центр описанной окружности треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиНа пересечении чего лежит центр описанной окружности треугольника

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиНа пересечении чего лежит центр описанной окружности треугольника

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиНа пересечении чего лежит центр описанной окружности треугольника

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовНа пересечении чего лежит центр описанной окружности треугольника

Для любого треугольника справедливы равенства (теорема синусов):

На пересечении чего лежит центр описанной окружности треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаНа пересечении чего лежит центр описанной окружности треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиНа пересечении чего лежит центр описанной окружности треугольника

Для любого треугольника справедливо равенство:

На пересечении чего лежит центр описанной окружности треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

На пересечении чего лежит центр описанной окружности треугольника

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

На пересечении чего лежит центр описанной окружности треугольника

На пересечении чего лежит центр описанной окружности треугольника.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

На пересечении чего лежит центр описанной окружности треугольника

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Центр описанной окружности

Где находится центр описанной около треугольника окружности? Что можно сказать о центре окружности, описанной около многоугольника?

Центр описанной около треугольника окружности является точкой пересечения серединных перпендикуляров к сторонам треугольника.

На пересечении чего лежит центр описанной окружности треугольника

окружность (O;R) — описанная около ∆ ABC.

O — точка пересечения серединных перпендикуляров к сторонам ∆ ABC.

На пересечении чего лежит центр описанной окружности треугольникаСоединим отрезками точки O и A, O и C.

OA=OC (как радиусы), следовательно, треугольник AOC — равнобедренный с основанием AC (по определению).

На пересечении чего лежит центр описанной окружности треугольникаПо свойству равнобедренного треугольника, высота и медиана, проведенные к основанию AC, совпадают):

На пересечении чего лежит центр описанной окружности треугольника

Следовательно, центр описанной окружности — точка O — лежит на прямой, перпендикулярной стороне AC и проходящей через ее середину, то есть на серединном перпендикуляре к AC.

На пересечении чего лежит центр описанной окружности треугольникаАналогично доказывается, что точка O лежит на серединном перпендикуляре к стороне AB.

Так как серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, то точка O — центр описанной около треугольника ABC окружности.

Что и требовалось доказать.

Аналогичные рассуждения можно применить и для многоугольника, около которого можно описать окружность.

Центр описанной около многоугольника окружности является точкой пересечения серединных перпендикуляров к сторонам этого многоугольника.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

2 Comments

на мой взгляд у вас опечатка — «Соединим отрезками точки O и A, O и C.

OA=OB( написано ОВ вместо ОС) (как радиусы), следовательно, треугольник AOB — равнобедренный с основанием AC (по определению).»

🎥 Видео

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Центр описанной окружности.Скачать

Центр описанной окружности.

Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

36 Где лежит центр окружности, описанной около произвольного треугольникаСкачать

36 Где лежит центр окружности, описанной около произвольного треугольника

Вписанные и описанные окружности. Геометрия 9 класс. Ключевая задача № 3.Скачать

Вписанные и описанные окружности. Геометрия 9 класс. Ключевая задача № 3.

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Где искать центр описанной окружности #геометрия #огэ #егэ #математикаСкачать

Где искать центр описанной окружности #геометрия #огэ #егэ #математика

Описанная и вписанная окружности треугольникаСкачать

Описанная и вписанная окружности треугольника

Описанная окружность треугольника. Нахождение радиуса описанной окружности треугольникаСкачать

Описанная окружность треугольника. Нахождение радиуса описанной окружности треугольника

Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции
Поделиться или сохранить к себе: