Многоугольник описан около окружности если все стороны касаются окружности

Многоугольник. Свойства четырехугольников описанных около окружности.

Если все стороны какого-нибудь многоугольника (MNPQ) касаются окружности, то говорят, что этот многоугольник описан около окружности, или что окружность вписана в него.

Многоугольник описан около окружности если все стороны касаются окружности

Теорема.

В описанном выпуклом четырехугольнике суммы противоположных сторон равны.

Пусть ABCD будет описанный выпуклый четырехугольник, т.е. стороны его касаются окружности. Требуется доказать, что AB + CD = BC + AD.

Обратная теорема.

Если в выпуклом четырехугольнике равны суммы противоположных сторон, то в него можно вписать окружность.

Требуется доказать, что в него можно вписать окружность.

Пусть ABCD такой выпуклый четырехугольник, в котором: AB + CD = AD + BC.

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

§ 4. Вписанная и описанная окружности

Вписанная окружность

Если все стороны многоугольника касаются окружности, то окружность называется вписанной в многоугольник, а многоугольник — описанным около этой окружности. На рисунке 231 четырёхугольник EFMN описан около окружности с центром О, а четырёхугольник DKMN не является описанным около этой окружности, так как сторона DK не касается окружности.

Многоугольник описан около окружности если все стороны касаются окружности

На рисунке 232 треугольник АВС описан около окружности с центром О.

Многоугольник описан около окружности если все стороны касаются окружности

Докажем теорему об окружности, вписанной в треугольник.

В любой треугольник можно вписать окружность.

Рассмотрим произвольный треугольник АВС и обозначим буквой О точку пересечения его биссектрис. Проведём из точки О перпендикуляры OK, OL и ОМ соответственно к сторонам АВ, ВС и СА (см. рис. 232). Так как точка О равноудалена от сторон треугольника АВС, то OK = OL = ОМ. Поэтому окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны треугольника АВС касаются этой окружности в точках К, L, М, так как они перпендикулярны к радиусам OK, OL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в треугольник АВС. Теорема доказана.

Отметим, что в треугольник можно вписать только одну окружность.

В самом деле, допустим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудалён от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают.

Обратимся к рисунку 232. Мы видим, что треугольник АВС составлен из трёх треугольников: ABO, ВСО и САО. Если в каждом из этих треугольников принять за основание сторону треугольника АВС, то высотой окажется радиус r окружности, вписанной в треугольник АВС. Поэтому площадь S треугольника АВС выражается формулой

Многоугольник описан около окружности если все стороны касаются окружности

площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

В отличие от треугольника не во всякий четырёхугольник можно вписать окружность.

Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т. е. прямоугольник, не являющийся квадратом. Ясно, что в такой прямоугольник можно «поместить» окружность, касающуюся трёх его сторон (рис. 233, а), но нельзя «поместить» окружность так, чтобы она касалась всех четырёх его сторон, т. е. нельзя вписать окружность. Если же в четырёхугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

В любом описанном четырёхугольнике суммы противоположных сторон равны.

Многоугольник описан около окружности если все стороны касаются окружности

Это свойство легко установить, используя рисунок 233, б, на котором одними и теми же буквами обозначены равные отрезки касательных. В самом деле, АВ + CD = а + b + с + d, ВС + AD-a + b + c + d, поэтому АВ + CD = ВС + AD. Оказывается, верно и обратное утверждение:

Если суммы противоположных сторон выпуклого четырёхугольника равны, то в него можно вписать окружность (см. задачу 724).

Описанная окружность

Если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник — вписанным в эту окружность. На рисунке 234 четырёхугольник ABCD вписан в окружность с центром О, а четырёхугольник AECD не является вписанным в эту окружность, так как вершина Е не лежит на окружности.

Многоугольник описан около окружности если все стороны касаются окружности

Треугольник АВС на рисунке 235 является вписанным в окружность с центром О.

Многоугольник описан около окружности если все стороны касаются окружности

Докажем теорему об окружности, описанной около треугольника.

Около любого треугольника можно описать окружность.

Рассмотрим произвольный треугольник АВС. Обозначим буквой О точку пересечения серединных перпендикуляров к его сторонам и проведём отрезки ОА, ОВ и ОС (рис. 235). Так как точка О равноудалена от вершин треугольника АВС, то О А = ОВ = ОС. Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника и, значит, является описанной около треугольника АВС. Теорема доказана.

Отметим, что около треугольника можно описать только одну окружность.

В самом деле, допустим, что около треугольника можно описать две окружности. Тогда центр каждой из них равноудалён от его вершин и поэтому совпадает с точкой О пересечения серединных перпендикуляров к сторонам треугольника, а радиус равен расстоянию от точки О до вершин треугольника. Следовательно, эти окружности совпадают.

В отличие от треугольника около четырёхугольника не всегда можно описать окружность.

Например, нельзя описать окружность около ромба, не являющегося квадратом (объясните почему). Если же около четырёхугольника можно описать окружность, то его углы обладают следующим замечательным свойством:

В любом вписанном четырёхугольнике сумма противоположных углов равна 180°.

Это свойство легко установить, если обратиться к рисунку 236 и воспользоваться теоремой о вписанном угле. В самом деле,

Многоугольник описан около окружности если все стороны касаются окружности

Многоугольник описан около окружности если все стороны касаются окружности

Многоугольник описан около окружности если все стороны касаются окружности

Оказывается, верно и обратное:

Если сумма противоположных углов четырёхугольника равна 180°, то около него можно описать окружность (см. задачу 729).

Задачи

689. В равнобедренном треугольнике основание равно 10 см, а боковая сторона равна 13 см. Найдите радиус окружности, вписанной в этот треугольник.

690. Найдите основание равнобедренного треугольника, если центр вписанной в него окружности делит высоту, проведённую к основанию, в отношении 12 : 5, считая от вершины, а боковая сторона равна 60 см.

691. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см, считая от основания. Найдите периметр треугольника.

692. В треугольник АВС вписана окружность, которая касается сторон АВ, ВС и СА в точках Р, Q и R. Найдите АР, РВ, BQ, QC, СВ, RA, если АВ = 10 см, ВС = 12 см, СА = 5 см.

693. В прямоугольный треугольник вписана окружность радиуса г. Найдите периметр треугольника, если: а) гипотенуза равна 26 см, r = 4см; б) точка касания делит гипотенузу на отрезки, равные 5 см и 12 см.

694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенуза треугольника равна с, а сумма катетов равна m.

695. Сумма двух противоположных сторон описанного четырёхугольника равна 15 см. Найдите периметр этого четырёхугольника.

696. Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.

697. Докажите, что площадь описанного многоугольника равна половине произведения его периметра на радиус вписанной окружности.

698. Сумма двух противоположных сторон описанного четырёхугольника равна 12 см, а радиус вписанной в него окружности равен 5 см. Найдите площадь четырёхугольника.

699. Сумма двух противоположных сторон описанного четырёхугольника равна 10 см, а его площадь — 12 см 2 . Найдите радиус окружности, вписанной в этот четырёхугольник.

700. Докажите, что в любой ромб можно вписать окружность.

701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждый из них впишите окружность.

702. В окружность вписан треугольник АВС так, что АВ — диаметр окружности. Найдите углы треугольника, если: а) Многоугольник описан около окружности если все стороны касаются окружностиBC = 134°; б) Многоугольник описан около окружности если все стороны касаются окружностиАС = 70°.

703. В окружность вписан равнобедренный треугольник АВС с основанием ВС. Найдите углы треугольника, если Многоугольник описан около окружности если все стороны касаются окружностиВС= 102°.

704. Окружность с центром О описана около прямоугольного треугольника. а) Докажите, что точка О — середина гипотенузы. б) Найдите стороны треугольника, если диаметр окружности равен d, а один из острых углов треугольника равен α.

705. Около прямоугольного треугольника АВС с прямым углом С описана окружность. Найдите радиус этой окружности, если: а) АС = 8 см, ВС = 6 см; б) АС = 18 см, ∠B = 30°.

706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности равен 10 см.

707. Угол, противолежащий основанию равнобедренного треугольника, равен 120°, боковая сторона треугольника равна 8 см. Найдите диаметр окружности, описанной около этого треугольника.

708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любой равнобедренной трапеции.

709. Докажите, что если около параллелограмма можно описать окружность, то этот параллелограмм — прямоугольник.

710. Докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.

711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. Для каждого из них постройте описанную окружность.

Ответы к задачам

689. Многоугольник описан около окружности если все стороны касаются окружностисм.

692. АР =1,5 см, РВ = 8,5 см, BQ = 8,5 см, QC = 3,5 см, CR= 3,5 см, RА = 1,5 см.

693. а) 60 см; б) 40 см.

702. a) ∠A = 67°, ∠B = 23°, ∠C = 90°; б) ∠A = 55°, ∠B = 35°, ∠C = 90°.

703. ∠A = 51°, ∠B = ∠C = 64°30′ или ∠A= 129°, ∠B = ∠C = 25°30′.

704. 6) d, d sin α, d cos α.

705. a) 5 cm; б) 18см. Указание. Воспользоваться задачей 704.

709. Указание. Воспользоваться свойством углов вписанного четырёхугольника.

710. Указание. Воспользоваться задачей 659.

Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Многоугольники, описанные около окружности Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности. Сама окружность. — презентация

Презентация была опубликована 6 лет назад пользователемМаксим Шишов

Похожие презентации

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Презентация на тему: » Многоугольники, описанные около окружности Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности. Сама окружность.» — Транскрипт:

1 Многоугольники, описанные около окружности Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности. Сама окружность при этом называется вписанной в многоугольник.

2 Теорема 1 В любой треугольник можно вписать окружность. Ее центром будет точка пересечения биссектрис этого треугольника.

3 Теорема 2 В любой правильный многоугольник можно вписать окружность. Ее центром является точка пересечения биссектрис углов многоугольника.

4 Теорема 3 В выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны, т.е. AB + CD = AD + BC.

5 Вопрос 1 Какой многоугольник называется описанным около окружности? Ответ: Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности.

6 Вопрос 2 Какая окружность называется вписанной в многоугольник? Ответ: Вписанной в многоугольник называется окружность, касающаяся всех сторон этого многоугольника.

7 Вопрос 3 Во всякий ли треугольник можно вписать окружность? Ответ: Да.

8 Вопрос 4 Какая точка является центром вписанной в треугольник окружности? Ответ: Центром вписанной окружности является точка пересечения биссектрис этого треугольника.

9 Вопрос 5 В любой ли правильный многоугольник можно ли вписать окружность? Ответ: Да.

10 Вопрос 6 Можно ли вписать окружность в: а) остроугольный треугольник; б) прямоугольный треугольник; в) тупоугольный треугольник? Ответ: а) Да; б) да; в) да.

11 Вопрос 7 Может ли центр вписанной в треугольник окружности находиться вне этого треугольника? Ответ: Нет.

12 Вопрос 8 Какой вид имеет треугольник, если: а) центры вписанной и описанной около треугольника окружностей совпадают; б) центр вписанной в него окружности принадлежит одной из его высот? Ответ: а) Равносторонний; б) равнобедренный.

13 Упражнение 1 Укажите центр окружности, вписанной в квадрат ABCD. Ответ:

14 Упражнение 2 Укажите центр окружности, вписанной в квадрат ABCD. Ответ:

15 Упражнение 3 Укажите центр окружности, вписанной в ромб ABCD. Ответ:

16 Упражнение 4 Укажите центр окружности, вписанной в треугольник ABC. Ответ:

17 Упражнение 5 Укажите центр окружности, вписанной в треугольник ABC. Ответ:

18 Упражнение 6 Ответ: 2. Найдите радиус окружности, вписанной в квадрат со стороной 4.

19 Упражнение 7 Ответ: 6. Найдите сторону квадрата, описанного около окружности радиуса 3.

20 Упражнение 8 Ответ: 10. Найдите высоту трапеции, в которую вписана окружность радиуса 5.

21 Упражнение 9 Окружность, вписанная в треугольник ABC, делит сторону AB в точке касания D на два отрезка AD = 5 см и DB = 6 см. Найдите периметр треугольника ABC, если известно, что BC = 10 см. Ответ: 30 см.

22 Упражнение 10 Ответ: 20 см. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, которые равны 4 см и 3 см, считая от вершины. Найдите периметр треугольника.

23 Упражнение 11 К окружности, вписанной в треугольник АВС, проведены три касательные. Периметры отсеченных треугольников равны p 1, p 2, p 3. Найдите периметр данного треугольника. Ответ: p 1 + p 2 + p 3.

24 Упражнение 12 Ответ: 34 см. В равнобедренном треугольнике боковые стороны делятся точками касания вписанной в треугольник окружности в отношении 7:5, считая от вершины, противоположной основанию. Найдите периметр треугольника, если его основание равно 10 см.

25 Упражнение 13 Ответ: а) Нет; Всегда ли можно ли вписать окружность в: а) прямоугольник; б) параллелограмм; в) ромб; г) квадрат; д) дельтоид ? б) нет; в) да; г) да; д) да.

26 Упражнение 14 Два равнобедренных треугольника имеют общее основание и расположены по разные стороны от него. Можно ли в образованный ими выпуклый четырехугольник вписать окружность? Ответ: Да.

27 Упражнение 15 Можно ли вписать окружность в четырехугольник, стороны которого последовательно равны 1, 2, 3, 4? Ответ: Нет.

28 Упражнение 16 Какой вид имеет четырехугольник, если центр вписанной в него окружности совпадает с точкой пересечения диагоналей? Ответ: Ромб.

29 Упражнение 17 Около окружности описана трапеция, периметр которой равен 18 см. Найдите ее среднюю линию. Ответ: 4,5 см.

30 Упражнение 18 В трапецию, периметр которой равен 56 см, вписана окружность. Три последовательные стороны трапеции относятся как 2:7:12. Найдите стороны трапеции. Ответ: 4 см, 14 см, 24 см, 14 см.

31 Упражнение 19 Боковые стороны трапеции, описанной около окружности, равны 2 см и 4 см. Найдите среднюю линию трапеции. Ответ: 3 см.

32 Упражнение 20 Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности. Ответ: 2.

33 Упражнение 21 Докажите, что если в трапецию ABCD (AB||CD) вписана окружность с центром O, то углы AOD и BOC равны 90 о. Доказательство. Лучи AO и DO являются биссектрисами внутренних односторонних углов при параллельных прямых AB и CD. Следовательно, угол AOD равен 90 о. Аналогично, угол BOC равен 90 о.

34 Упражнение 22 Докажите, что если в равнобедренную трапецию ABCD (AB||CD) вписана окружность, ее боковые стороны AD и BC равны средней линии EF. Доказательство. Сумма боковых сторон трапеции равна сумме оснований. Следовательно, боковая сторона равна полусумме оснований, т.е. равна средней линии.

35 Упражнение 23 Три последовательные стороны четырехугольника, в который можно вписать окружность, равны 6 см, 8 см и 9 см. Найдите четвертую сторону и периметр этого четырехугольника. Ответ: 7 см, 30 см.

36 Упражнение 24 Противоположные стороны четырехугольника, описанного около окружности, равны 7 см и 10 см. Можно ли по этим данным найти периметр четырехугольника? Ответ: Да, 34 см.

37 Упражнение 25 Периметр четырехугольника, описанного около окружности, равен 24, две его стороны равны 5 и 6. Найдите большую из оставшихся сторон. Ответ: 7.

38 Упражнение 26 К окружности, вписанной в треугольник АВС, проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника. Ответ: 24.

39 Упражнение 27 В шестиугольнике ABCDEF, описанном около окружности AB = 3, CD = 4, EF = 2. Найдите периметр этого шестиугольника. Ответ: 18.

40 Упражнение 28* Можно ли вписать окружность в пятиугольник, стороны которого последовательно равны 1, 2, 1, 2, 1? Ответ: Нет. Если в пятиугольник можно вписать окружность, то сумма любых двух его не соседних сторон меньше суммы трех оставшихся сторон.

41 Упражнение 29* Можно ли вписать окружность в шестиугольник, стороны которого последовательно равны 1, 2, 1, 2, 1, 2? Ответ: Нет. Если в шестиугольник можно вписать окружность, то сумма любых трех его не соседних сторон равна сумме трех оставшихся сторон.

42 Упражнение 30* Стороны пятиугольника, описанного около окружности, последовательно равны 1, 2, 3, 2, 1. Найдите радиус этой окружности, если угол, заключенный между сторонами, равными 1, равен 120 о. Ответ:

🔍 Видео

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

110. Окружность, описанная около правильного многоугольникаСкачать

110. Окружность, описанная около правильного многоугольника

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

9 класс. Правильный многоугольник, вписанный в окружность и описанный около окружностиСкачать

9 класс. Правильный многоугольник, вписанный в окружность и описанный около окружности

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

Правильные многоугольники. Урок 11. Геометрия 9 классСкачать

Правильные многоугольники. Урок 11. Геометрия 9 класс

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133

Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

9 класс. Правильный многоугольник, вписанный в окружность и описанный около окружности. Мерзляк А.Г.Скачать

9 класс. Правильный многоугольник, вписанный в окружность и описанный около окружности. Мерзляк А.Г.

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Радиус описанной окружностиСкачать

Радиус описанной окружности

Все об окружностях на ЕГЭ | Профильная математика 2023 | УмскулСкачать

Все об окружностях на ЕГЭ | Профильная математика 2023 | Умскул

Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

Геометрия 8 класс (Урок№32 - Вписанная окружность.)
Поделиться или сохранить к себе: