Материальная точка движения с постоянной скоростью по окружности радиусом r

Материальная точка движения с постоянной скоростью по окружности радиусом r

Материальная точка движется по окружности радиусом R с постоянной линейной скоростью v.

Установите соответствие между физическими величинами, характеризующими движение точки, и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

А) частота обращения

Б) угловая скорость движения

1) Материальная точка движения с постоянной скоростью по окружности радиусом r

2) Материальная точка движения с постоянной скоростью по окружности радиусом r

3) Материальная точка движения с постоянной скоростью по окружности радиусом r

4) Материальная точка движения с постоянной скоростью по окружности радиусом r

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Частота обращения материальной точки может быть найдена как

Видео:Материальная точка движется по окружности радиусом R с постоянной по модулю скоростьюСкачать

Материальная точка движется по окружности радиусом R с постоянной по модулю скоростью

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Материальная точка движения с постоянной скоростью по окружности радиусом r

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Видео:Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

Материальная точка движения с постоянной скоростью по окружности радиусом r

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

Материальная точка движения с постоянной скоростью по окружности радиусом r

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Количество оборотов выражается следующей формулой:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Материальная точка движения с постоянной скоростью по окружности радиусом r

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

Материальная точка движения с постоянной скоростью по окружности радиусом r

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

Материальная точка движения с постоянной скоростью по окружности радиусом r

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Материальная точка движения с постоянной скоростью по окружности радиусом r

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

Материальная точка движения с постоянной скоростью по окружности радиусом r

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

Материальная точка движения с постоянной скоростью по окружности радиусом r

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Выражая угловую скорость через частоту, получим:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Сравним две формулы:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Преобразуем формулу линейной скорости и получим:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

Материальная точка движения с постоянной скоростью по окружности радиусом r

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Видео:Движение материальной точки по окружности | Физика ЕГЭ, ЦТСкачать

Движение материальной точки по окружности | Физика ЕГЭ, ЦТ

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Подставляем известные данные в формулу и вычисляем:

Материальная точка движения с постоянной скоростью по окружности радиусом r

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Произведем сокращения и получим:

Материальная точка движения с постоянной скоростью по окружности радиусом r

Материальная точка движения с постоянной скоростью по окружности радиусом r

Материальная точка движения с постоянной скоростью по окружности радиусом r

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Материальная точка движется по окружности радиуса R с постоянной по модулю скоростью. Период обращения точки по окружности равен Т.

Видео:Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Ваш ответ

Видео:Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

решение вопроса

Видео:Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)Скачать

Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)

Похожие вопросы

  • Все категории
  • экономические 43,283
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,073
  • разное 16,831

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

🎥 Видео

Теория. Движение тела по окружности с постоянной по модулю скоростьюСкачать

Теория. Движение тела по окружности с постоянной по модулю скоростью

Физика 9 класс. §18 Движение тела по окружности с постоянной по модулю скоростьюСкачать

Физика 9 класс. §18 Движение тела по окружности с постоянной по модулю скоростью

Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)Скачать

Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)

Физика 10 класс : Движение по окружности с постоянной скоростьюСкачать

Физика 10 класс :  Движение по окружности с постоянной скоростью

Точка движется по окружности радиусом R=2см. Волькенштейн 1.47Скачать

Точка движется по окружности радиусом R=2см. Волькенштейн 1.47

Вращательное движение. 10 класс.Скачать

Вращательное движение. 10 класс.

КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное УскорениеСкачать

КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное Ускорение

9 класс | Кинематика | Движение по окружности. Постоянная по модулю скоростьСкачать

9 класс | Кинематика | Движение по окружности. Постоянная по модулю скорость

Физика | Равномерное движение по окружностиСкачать

Физика | Равномерное движение по окружности

Ускорение при равномерном движении по окружностиСкачать

Ускорение при равномерном движении по окружности

Физика 9 класс. Движение по окружностиСкачать

Физика 9 класс. Движение по окружности

ДВИЖЕНИЕ ПО ОКРУЖНОСТИ 9 класс физика ПерышкинСкачать

ДВИЖЕНИЕ ПО ОКРУЖНОСТИ 9 класс физика Перышкин
Поделиться или сохранить к себе:
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫФОРМУЛЫ