Математическое ожидание двумерного дискретного случайного вектора

Математическое ожидание двумерного дискретного случайного вектора

В этом разделе рассмотрены числовые характеристики только двумерных случайных величин, поскольку обобщение на случай Математическое ожидание двумерного дискретного случайного векторане вызывает затруднений.

Пусть ( x , h ) — двумерная случайная величина, тогда M( x , h )=(M( x ), M( h )), т.е. математическое ожидание случайного вектора — это вектор из математических ожиданий компонент вектора.

Если ( x , h ) — дискретный случайный вектор с распределением

y1y2.ym
x1p11p12.p1m
x2p12p12.p2m
...pij.
xnpn1pn2.pnm

то математические ожидания компонент вычисляются по формулам:

Математическое ожидание двумерного дискретного случайного вектора, Математическое ожидание двумерного дискретного случайного вектора.

Эти формулы можно записать в сокращенном виде.

Обозначим Математическое ожидание двумерного дискретного случайного вектораи Математическое ожидание двумерного дискретного случайного вектора, тогда Математическое ожидание двумерного дискретного случайного вектораи Математическое ожидание двумерного дискретного случайного вектора.

Если p( x , h )(x, y)- совместная плотность распределения непрерывной двумерной случайной величины ( x , h ), то

Математическое ожидание двумерного дискретного случайного вектораи Математическое ожидание двумерного дискретного случайного вектора.

Поскольку Математическое ожидание двумерного дискретного случайного вектора-плотность распределения случайной величины x , то Математическое ожидание двумерного дискретного случайного вектораи, аналогично, Математическое ожидание двумерного дискретного случайного вектора.

Понятие дисперсии обобщается на многомерные случайные величины нетривиальным образом. Это обобщение будет сделано в следующем разделе. Здесь лишь приведем формулы для вычисления дисперсии компонент двумерного случайного вектора.

Если ( x , h ) — двумерная случайная величина, то

D x = M( x M x ) 2 = M x 2 — M( x ) 2 , D h = M( h M h ) 2 = M h 2 — M( h ) 2 .

Входящие в эту формулу математические ожидания вычисляются по приведенным выше формулам.

Между случайными величинами может существовать функциональная зависимость. Например, если x — случайная величина и h = x 2 , то h — тоже случайная величина, связанная с x функциональной зависимостью. В то же время между случайными величинами может существовать зависимость другого рода, называемая стохастической. В разделе, посвященном условным распределениям уже обсуждалась такая зависимость. Из рассмотренных там примеров видно, что информация о значении одной случайной величины (одной компоненты случайного вектора) изменяет распределение другой случайной величины (другой компоненты случайного вектора), а это может, вообще говоря, изменить и числовые характеристики случайных величин.

Математическое ожидание, вычисленное по условному распределению, называется условным математическим ожиданием.

Для двумерного дискретного случайного вектора ( x , h ) с распределением

y1y2.ym
x1p11p12.p1m
x2p12p12.p2m
...pij.
xnpn1pn2.pnm

условное математическое ожидание случайной величины x при условии, что случайная величина h принимает значение yj, вычисляется по формуле Математическое ожидание двумерного дискретного случайного вектора.

Аналогично, условное математическое ожидание случайной величины h при условии, что случайная величина x принимает значение xi, равно Математическое ожидание двумерного дискретного случайного вектора.

Видно, что условное математическое ожидание случайной величины x является функцией значений случайной величины h , т.е. M( x / h = y) = f1(y) и, совершенно аналогично, M( h / x = x) = f2(x).

Функцию f1(y) называют регрессией случайной величины x на случайную величину h , а f2(x) — регрессией случайной величины h на случайную величину x .

Если p( x , h )(x, y) совместная плотность вероятностей двумерной случайной величины ( x , h ), то

Математическое ожидание двумерного дискретного случайного вектора и Математическое ожидание двумерного дискретного случайного вектора.

Если между случайными величинами x и h существует стохастическая связь, то одним из параметров, характеризующих меру этой связи является ковариация cov( x , h ). Ковариацию вычисляют по формулам cov( x , h )=M[( x M x )( h — M h )] = M( x h ) — M x M h .

Если случайные величины x и h независимы, то cov( x , h )=0.

Обратное, вообще говоря, неверно. Из равенства нулю ковариации не следует независимость случайных величин. Случайные величины могут быть зависимыми в то время как их ковариация нулевая! Но зато, если ковариация случайных величин отлична от нуля, то между ними существует стохастическая связь, мерой которой и является величина ковариации.

cov( x , x ) = D x ;

Математическое ожидание двумерного дискретного случайного вектора;

Математическое ожидание двумерного дискретного случайного вектора;

Математическое ожидание двумерного дискретного случайного вектора,

Ковариационной матрицей случайного вектора ( x , h ) называется матрица вида

Математическое ожидание двумерного дискретного случайного вектора.

Эта матрица симметрична и положительно определена. Ее определитель называется обобщенной дисперсией и может служить мерой рассеяния системы случайных величин ( x , h ).

Как уже отмечалось ранее, дисперсия суммы независимых случайных величин равна сумме их дисперсий: Математическое ожидание двумерного дискретного случайного вектора. Если же случайные величины зависимы, то Математическое ожидание двумерного дискретного случайного вектора.

Понятно, что значение ковариации зависит не только от “тесноты” связи случайных величин, но и от самих значений этих величин, например, от единиц измерения этих значений. Для исключения этой зависимости вместо ковариации используется безразмерный коэффициент корреляции Математическое ожидание двумерного дискретного случайного вектора.

Этот коэффициент обладает следующими свойствами:

его модуль не превосходит единицы, т.е. Математическое ожидание двумерного дискретного случайного вектора;

если x и h независимы, то k( x , h )=0 (обратное неверно!);

если Математическое ожидание двумерного дискретного случайного вектора, то случайные величины x и h связаны функциональной зависимостью вида

где a и b- некоторые числовые коэффициенты;

Математическое ожидание двумерного дискретного случайного вектора;

Корреляционной матрицей случайного вектора называется матрица

Математическое ожидание двумерного дискретного случайного вектора.

Если Математическое ожидание двумерного дискретного случайного вектора и Математическое ожидание двумерного дискретного случайного вектора, то ковариационная и корреляционная матрицы случайного вектора ( x , h ) связаны соотношением Математическое ожидание двумерного дискретного случайного вектора, где Математическое ожидание двумерного дискретного случайного вектора.

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Видео:Случайный вектор двумерной случайной величиныСкачать

Случайный вектор двумерной случайной величины

Системы случайных величин

Назначение сервиса . С помощью сервиса по заданному закону распределения можно найти:

  • ряды распределения X и Y, математическое ожидание M[X], M[Y], дисперсию D[X], D[Y];
  • ковариацию cov(x,y), коэффициент корреляции rx,y, условный ряд распределения X, условное математическое ожидание M[X/Y=yi];

Кроме этого, дается ответ на вопрос, «зависимы ли случайные величины X и Y ?».

  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Пример №1 . Двумерная дискретная случайная величина имеет таблицу распределения:

Y/X1234
1000,110,120,03
2000,130,090,02
300,020,110,080,01
400,030,110,05q

Найти величину q и коэффициент корреляции этой случайной величины.

Решение. Величину q найдем из условия Σpij = 1
Σpij = 0,02 + 0,03 + 0,11 + … + 0,03 + 0,02 + 0,01 + q = 1
0.91+q = 1. Откуда q = 0.09
Находим ряды распределения X и Y.
Пользуясь формулой ∑P(xi,yj) = pi (j=1..n), находим ряд распределения X.

X10203040
P0.260.240.220.28∑Pi = 1

Математическое ожидание M[X] = 10*0.26 + 20*0.24 + 30*0.22 + 40*0.28 = 25.2
Дисперсия D[X] = 10 2 *0.26 + 20 2 *0.24 + 30 2 *0.22 + 40 2 *0.28 — 25.2 2 = 132.96
Среднее квадратическое отклонение σ(x) = sqrt(D[X]) = sqrt(132.96) = 11.531

Пользуясь формулой ∑P(xi,yj) = qj (i=1..m), находим ряд распределения Y.

Y1234
P0.050.460.340.15∑Pi = 1

Математическое ожидание M[Y].
M[y] = 1*0.05 + 2*0.46 + 3*0.34 + 4*0.15 = 2.59
Дисперсия D[Y] = 1 2 *0.05 + 2 2 *0.46 + 3 2 *0.34 + 4 2 *0.15 — 2.59 2 = 0.64
Среднее квадратическое отклонение σ(y) = sqrt(D[Y]) = sqrt(0.64) = 0.801

Ковариация cov(X,Y) = M[X·Y] — M[X]·M[Y] = 2·10·0.11 + 3·10·0.12 + 4·10·0.03 + 2·20·0.13 + 3·20·0.09 + 4·20·0.02 + 1·30·0.02 + 2·30·0.11 + 3·30·0.08 + 4·30·0.01 + 1·40·0.03 + 2·40·0.11 + 3·40·0.05 + 4·40·0.09 — 25.2 · 2.59 = -0.068
Коэффициент корреляции rxy = cov(x,y)/σ(x)&sigma(y) = -0.068/(11.531*0.801) = -0.00736

Пример 2 . Данные статистической обработки сведений относительно двух показателей X и Y отражены в корреляционной таблице. Требуется:

  1. написать ряды распределения для X и Y и вычислить для них выборочные средние и выборочные средние квадратические отклонения;
  2. написать условные ряды распределения Y/x и вычислить условные средние Y/x;
  3. изобразить графически зависимость условных средних Y/x от значений X;
  4. рассчитать выборочный коэффициент корреляции Y на X;
  5. написать выборочное уравнение прямой регрессии;
  6. изобразить геометрически данные корреляционной таблицы и построить прямую регрессии.

Решение. Упорядоченная пара (X,Y) случайных величин X и Y называется двумерной случайной величиной, или случайным вектором двумерного пространства. Двумерная случайная величина (X,Y) называется также системой случайных величина X и Y.
Множество всех возможных значений дискретной случайной величины с их вероятностями называется законом распределения этой случайной величины.
Дискретная двумерная случайная величина (X,Y) считается заданной, если известен ее закон распределения:
P(X=xi, Y=yj) = pij, i=1,2. n, j=1,2. m

X / Y2030405060
1120000
1646000
2103620
26004584
3100467
3600003

События (X=xi, Y=yj) образуют полную группу событий, поэтому сумма всех вероятностей pij(i=1,2. n, j=1,2. m), указанных в таблице, равна 1.
1. Зависимость случайных величин X и Y.
Находим ряды распределения X и Y.
Пользуясь формулой ∑P(xi,yj) = pi (j=1..n), находим ряд распределения X.

X111621263136
P2101157173∑Pi = 100

Математическое ожидание M[X].
M[x] = (11*2 + 16*10 + 21*11 + 26*57 + 31*17 + 36*3 )/100 = 25.3
Дисперсия D[X].
D[X] = (11 2 *2 + 16 2 *10 + 21 2 *11 + 26 2 *57 + 31 2 *17 + 36 2 *3 )/100 — 25.3 2 = 24.01
Среднее квадратическое отклонение σ(x).
Математическое ожидание двумерного дискретного случайного вектора
Пользуясь формулой ∑P(xi,yj) = qj (i=1..m), находим ряд распределения Y.

Y2030405060
P69551614∑Pi = 100

Математическое ожидание M[Y].
M[y] = (20*6 + 30*9 + 40*55 + 50*16 + 60*14 )/100 = 42.3
Дисперсия D[Y].
D[Y] = (20 2 *6 + 30 2 *9 + 40 2 *55 + 50 2 *16 + 60 2 *14 )/100 — 42.3 2 = 99.71
Среднее квадратическое отклонение σ(y).
Математическое ожидание двумерного дискретного случайного вектора
Поскольку, P(X=11,Y=20) = 2≠2·6, то случайные величины X и Y зависимы.
2. Условный закон распределения X.
Условный закон распределения X(Y=20).
P(X=11/Y=20) = 2/6 = 0.33
P(X=16/Y=20) = 4/6 = 0.67
P(X=21/Y=20) = 0/6 = 0
P(X=26/Y=20) = 0/6 = 0
P(X=31/Y=20) = 0/6 = 0
P(X=36/Y=20) = 0/6 = 0
Условное математическое ожидание M[X/Y=20).
M[X/Y=y] = 11*0.33 + 16*0.67 + 21*0 + 26*0 + 31*0 + 36*0 = 14.33
Условная дисперсия D[X/Y=20).
D[X/Y=y] = 11 2 *0.33 + 16 2 *0.67 + 21 2 *0 + 26 2 *0 + 31 2 *0 + 36 2 *0 — 14.33 2 = 5.56
Условный закон распределения X(Y=30).
P(X=11/Y=30) = 0/9 = 0
P(X=16/Y=30) = 6/9 = 0.67
P(X=21/Y=30) = 3/9 = 0.33
P(X=26/Y=30) = 0/9 = 0
P(X=31/Y=30) = 0/9 = 0
P(X=36/Y=30) = 0/9 = 0
Условное математическое ожидание M[X/Y=30).
M[X/Y=y] = 11*0 + 16*0.67 + 21*0.33 + 26*0 + 31*0 + 36*0 = 17.67
Условная дисперсия D[X/Y=30).
D[X/Y=y] = 11 2 *0 + 16 2 *0.67 + 21 2 *0.33 + 26 2 *0 + 31 2 *0 + 36 2 *0 — 17.67 2 = 5.56
Условный закон распределения X(Y=40).
P(X=11/Y=40) = 0/55 = 0
P(X=16/Y=40) = 0/55 = 0
P(X=21/Y=40) = 6/55 = 0.11
P(X=26/Y=40) = 45/55 = 0.82
P(X=31/Y=40) = 4/55 = 0.0727
P(X=36/Y=40) = 0/55 = 0
Условное математическое ожидание M[X/Y=40).
M[X/Y=y] = 11*0 + 16*0 + 21*0.11 + 26*0.82 + 31*0.0727 + 36*0 = 25.82
Условная дисперсия D[X/Y=40).
D[X/Y=y] = 11 2 *0 + 16 2 *0 + 21 2 *0.11 + 26 2 *0.82 + 31 2 *0.0727 + 36 2 *0 — 25.82 2 = 4.51
Условный закон распределения X(Y=50).
P(X=11/Y=50) = 0/16 = 0
P(X=16/Y=50) = 0/16 = 0
P(X=21/Y=50) = 2/16 = 0.13
P(X=26/Y=50) = 8/16 = 0.5
P(X=31/Y=50) = 6/16 = 0.38
P(X=36/Y=50) = 0/16 = 0
Условное математическое ожидание M[X/Y=50).
M[X/Y=y] = 11*0 + 16*0 + 21*0.13 + 26*0.5 + 31*0.38 + 36*0 = 27.25
Условная дисперсия D[X/Y=50).
D[X/Y=y] = 11 2 *0 + 16 2 *0 + 21 2 *0.13 + 26 2 *0.5 + 31 2 *0.38 + 36 2 *0 — 27.25 2 = 10.94
Условный закон распределения X(Y=60).
P(X=11/Y=60) = 0/14 = 0
P(X=16/Y=60) = 0/14 = 0
P(X=21/Y=60) = 0/14 = 0
P(X=26/Y=60) = 4/14 = 0.29
P(X=31/Y=60) = 7/14 = 0.5
P(X=36/Y=60) = 3/14 = 0.21
Условное математическое ожидание M[X/Y=60).
M[X/Y=y] = 11*0 + 16*0 + 21*0 + 26*0.29 + 31*0.5 + 36*0.21 = 30.64
Условная дисперсия D[X/Y=60).
D[X/Y=y] = 11 2 *0 + 16 2 *0 + 21 2 *0 + 26 2 *0.29 + 31 2 *0.5 + 36 2 *0.21 — 30.64 2 = 12.37
3. Условный закон распределения Y.
Условный закон распределения Y(X=11).
P(Y=20/X=11) = 2/2 = 1
P(Y=30/X=11) = 0/2 = 0
P(Y=40/X=11) = 0/2 = 0
P(Y=50/X=11) = 0/2 = 0
P(Y=60/X=11) = 0/2 = 0
Условное математическое ожидание M[Y/X=11).
M[Y/X=x] = 20*1 + 30*0 + 40*0 + 50*0 + 60*0 = 20
Условная дисперсия D[Y/X=11).
D[Y/X=x] = 20 2 *1 + 30 2 *0 + 40 2 *0 + 50 2 *0 + 60 2 *0 — 20 2 = 0
Условный закон распределения Y(X=16).
P(Y=20/X=16) = 4/10 = 0.4
P(Y=30/X=16) = 6/10 = 0.6
P(Y=40/X=16) = 0/10 = 0
P(Y=50/X=16) = 0/10 = 0
P(Y=60/X=16) = 0/10 = 0
Условное математическое ожидание M[Y/X=16).
M[Y/X=x] = 20*0.4 + 30*0.6 + 40*0 + 50*0 + 60*0 = 26
Условная дисперсия D[Y/X=16).
D[Y/X=x] = 20 2 *0.4 + 30 2 *0.6 + 40 2 *0 + 50 2 *0 + 60 2 *0 — 26 2 = 24
Условный закон распределения Y(X=21).
P(Y=20/X=21) = 0/11 = 0
P(Y=30/X=21) = 3/11 = 0.27
P(Y=40/X=21) = 6/11 = 0.55
P(Y=50/X=21) = 2/11 = 0.18
P(Y=60/X=21) = 0/11 = 0
Условное математическое ожидание M[Y/X=21).
M[Y/X=x] = 20*0 + 30*0.27 + 40*0.55 + 50*0.18 + 60*0 = 39.09
Условная дисперсия D[Y/X=21).
D[Y/X=x] = 20 2 *0 + 30 2 *0.27 + 40 2 *0.55 + 50 2 *0.18 + 60 2 *0 — 39.09 2 = 44.63
Условный закон распределения Y(X=26).
P(Y=20/X=26) = 0/57 = 0
P(Y=30/X=26) = 0/57 = 0
P(Y=40/X=26) = 45/57 = 0.79
P(Y=50/X=26) = 8/57 = 0.14
P(Y=60/X=26) = 4/57 = 0.0702
Условное математическое ожидание M[Y/X=26).
M[Y/X=x] = 20*0 + 30*0 + 40*0.79 + 50*0.14 + 60*0.0702 = 42.81
Условная дисперсия D[Y/X=26).
D[Y/X=x] = 20 2 *0 + 30 2 *0 + 40 2 *0.79 + 50 2 *0.14 + 60 2 *0.0702 — 42.81 2 = 34.23
Условный закон распределения Y(X=31).
P(Y=20/X=31) = 0/17 = 0
P(Y=30/X=31) = 0/17 = 0
P(Y=40/X=31) = 4/17 = 0.24
P(Y=50/X=31) = 6/17 = 0.35
P(Y=60/X=31) = 7/17 = 0.41
Условное математическое ожидание M[Y/X=31).
M[Y/X=x] = 20*0 + 30*0 + 40*0.24 + 50*0.35 + 60*0.41 = 51.76
Условная дисперсия D[Y/X=31).
D[Y/X=x] = 20 2 *0 + 30 2 *0 + 40 2 *0.24 + 50 2 *0.35 + 60 2 *0.41 — 51.76 2 = 61.59
Условный закон распределения Y(X=36).
P(Y=20/X=36) = 0/3 = 0
P(Y=30/X=36) = 0/3 = 0
P(Y=40/X=36) = 0/3 = 0
P(Y=50/X=36) = 0/3 = 0
P(Y=60/X=36) = 3/3 = 1
Условное математическое ожидание M[Y/X=36).
M[Y/X=x] = 20*0 + 30*0 + 40*0 + 50*0 + 60*1 = 60
Условная дисперсия D[Y/X=36).
D[Y/X=x] = 20 2 *0 + 30 2 *0 + 40 2 *0 + 50 2 *0 + 60 2 *1 — 60 2 = 0
Ковариация.
cov(X,Y) = M[X·Y] — M[X]·M[Y]
cov(X,Y) = (20·11·2 + 20·16·4 + 30·16·6 + 30·21·3 + 40·21·6 + 50·21·2 + 40·26·45 + 50·26·8 + 60·26·4 + 40·31·4 + 50·31·6 + 60·31·7 + 60·36·3)/100 — 25.3 · 42.3 = 38.11
Если случайные величины независимы, то их ковариации равна нулю. В нашем случае cov(X,Y) ≠ 0.
Коэффициент корреляции.
Математическое ожидание двумерного дискретного случайного вектора
Математическое ожидание двумерного дискретного случайного вектора
Уравнение линейной регрессии с y на x имеет вид:
Математическое ожидание двумерного дискретного случайного вектора
Уравнение линейной регрессии с x на y имеет вид:
Математическое ожидание двумерного дискретного случайного вектора
Найдем необходимые числовые характеристики.
Выборочные средние:
x = (20(2 + 4) + 30(6 + 3) + 40(6 + 45 + 4) + 50(2 + 8 + 6) + 60(4 + 7 + 3))/100 = 42.3
y = (20(2 + 4) + 30(6 + 3) + 40(6 + 45 + 4) + 50(2 + 8 + 6) + 60(4 + 7 + 3))/100 = 25.3
Дисперсии:
σ 2 x = (20 2 (2 + 4) + 30 2 (6 + 3) + 40 2 (6 + 45 + 4) + 50 2 (2 + 8 + 6) + 60 2 (4 + 7 + 3))/100 — 42.3 2 = 99.71
σ 2 y = (11 2 (2) + 16 2 (4 + 6) + 21 2 (3 + 6 + 2) + 26 2 (45 + 8 + 4) + 31 2 (4 + 6 + 7) + 36 2 (3))/100 — 25.3 2 = 24.01
Откуда получаем среднеквадратические отклонения:
σx = 9.99 и σy = 4.9
и ковариация:
Cov(x,y) = (20·11·2 + 20·16·4 + 30·16·6 + 30·21·3 + 40·21·6 + 50·21·2 + 40·26·45 + 50·26·8 + 60·26·4 + 40·31·4 + 50·31·6 + 60·31·7 + 60·36·3)/100 — 42.3 · 25.3 = 38.11
Определим коэффициент корреляции:
Математическое ожидание двумерного дискретного случайного вектора
Математическое ожидание двумерного дискретного случайного вектора
Запишем уравнения линий регрессии y(x):
Математическое ожидание двумерного дискретного случайного вектора
и вычисляя, получаем:
yx = 0.38 x + 9.14
Запишем уравнения линий регрессии x(y):
Математическое ожидание двумерного дискретного случайного вектора
и вычисляя, получаем:
xy = 1.59 y + 2.15
Если построить точки, определяемые таблицей и линии регрессии, увидим, что обе линии проходят через точку с координатами (42.3; 25.3) и точки расположены близко к линиям регрессии.
Значимость коэффициента корреляции.
Математическое ожидание двумерного дискретного случайного вектора
По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=100-m-1 = 98 находим tкрит:
tкрит (n-m-1;α/2) = (98;0.025) = 1.984
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим.

Задание. Количество попаданий пар значений случайных величин X и Y в соответствующие интервалы приведены в таблице. По этим данным найти выборочный коэффициент корреляции и выборочные уравнения прямых линий регрессии Y на X и X на Y .
Решение

Пример. Распределение вероятностей двумерной случайной величины (X, Y) задано таблицей. Найти законы распределения составляющих величин X, Y и коэффициент корреляции p(X, Y).
Скачать решение

Задание. Двумерная дискретная величина (X, Y) задана законом распределения. Найти законы распределения составляющих X и Y, ковариацию и коэффициент корреляции.

Видео:Математика без Ху!ни. Ряд распределения дискретной случайной величины. Мат ожидание и дисперсия.Скачать

Математика без Ху!ни. Ряд распределения дискретной случайной величины. Мат ожидание и дисперсия.

Двумерная дискретная случайная величина

Ранее мы разобрали примеры решений задач для одномерной дискретной случайной величины. Но бывает, что результат испытания описывается не одной, а несколькими случайными величинами (случайным вектором).

В случае двух величин (скажем, $X$ и $Y$) мы имеем дело с так называемой двумерной дискретной случайной величиной $(X,Y)$ (или системой случайных одномерных величин). Кратко выпишем основы теории.

Видео:Математическое ожидание дискретной случайной величины. 10 класс.Скачать

Математическое ожидание дискретной случайной величины. 10 класс.

Система двух случайных величин: теория

Двумерная ДСВ задается законом распределения (обычно представленным в виде таблицы распределения):

$$ P(X=x_i, Y=y_k)=p_, i=1,2. m; k=1,2. n; quad sum_p_=1. $$

По нему можно найти одномерные законы распределения (составляющих):

$$ p_i=P(X=x_i)=sum_p_, i=1,2. m; \ p_k=P(Y=y_k)=sum_ p_, k=1,2. n. $$

Интегральная функция распределения задается формулой $F(x,y)=P(Xlt x, Ylt y)$. Даже для самого простого закона распределения 2 на 2 функция занимает 5 строк, поэтому ее редко выписывают в явном виде.

Если для любой пары возможных значений $(X=x_i, Y=y_k)$ выполняется равенство

$$P(X=x_i, Y=y_k)=P(X=x_i)cdot P(Y=y_k),$$

то случайные величины $X, Y$ называются независимыми.

Если случайные величины зависимы, для них можно выписать условные законы распределения (для независимых они совпадают с безусловными законами):

Для случайных величин $X,Y$, входящих в состав случайного вектора, можно вычислить ковариацию и коэффициент корреляции по формулам:

Далее вы найдете разные примеры задач с полным решением, где используются дискретные двумерные случайные величины (системы случайных величин).

Видео:Математическое Ожидание, Дисперсия, Стандартное Отклонение за 5 минутСкачать

Математическое Ожидание, Дисперсия, Стандартное Отклонение за 5 минут

Примеры решений

Задача 1. В продукции завода брак вследствие дефекта А составляет 10%, а вследствие дефекта В — 20%. Годная продукция составляет 75%. Пусть X — индикатор дефекта А, a Y — индикатор дефекта В. Составить матрицу распределения двумерной случайной величины (X, Y). Найти одномерные ряды распределений составляющих X и У и исследовать их зависимость.

Задача 2. Два баскетболиста по два раза бросают мяч в корзину. При каждом броске вероятность попадания для первого баскетболиста 0,6, для второго – 0,7. Случайная величина X – число попаданий первым баскетболистом по кольцу. Случайная величина Y – суммарное число попаданий обоими баскетболистами. Построить таблицу распределения случайного вектора (X,Y). Найти характеристики вектора (X,Y). Зависимы или независимы случайные величины X и Y.

Задача 3. Слово РОССИЯ разрезано по буквам. Случайным образом вынимаем две буквы, тогда X – количество гласных среди них, затем вынимаем еще две буквы и Y – количество гласных во второй паре. Составить закон распределения системы случайных величин X, Y.

Задача 4. $X, Y$ — индикаторы событий $A, B$, означающий положительные ответы соответственно на вопросы $alpha, beta$ социологической анкеты. По данным социологического опроса двумерная случайная величина $(X,Y)$ имеет следующую таблицу распределения.
Положительному ответу присвоен ранг 1, отрицательному – 0.
Найти коэффициент корреляции $rho_$.

Задача 5. Составить закон распределения X — сумм очков и Y — числа тузов при выборе двух карт из колоды, содержащей только тузов, королей и дам (туз=11, дама=3, король=4)
Найти законы распределения величин Х и Y. Зависимы ли эти величины? Написать функцию распределения для (Х, Y). Построить ковариационный граф. Посчитать ковариацию (X,Y). Написать ковариационную матрицу. Посчитать корреляцию (X,Y) и написать корреляционную матрицу.

Задача 6. Бросаются две одинаковые игральные кости. Случайная величина X равна 1, если сумма выпавших чисел четна, и равна 0 в противном случае. Случайная величина Y равна 1, если произведение выпавших чисел четно, и 0 в противном случае. Описать закон распределения случайного вектора (X,Y). Найти D[X], D[Y] и cov[X,Y].

Задача 7. В урне лежат 100 шаров, из них 25 белых. Из урны последовательно вынимают два шара. Пусть $X_i$ – число белых шаров, появившихся при $i$-м вынимании. Найти коэффициент корреляции между величинами $X_1$ и $X_2$.

Задача 8. Для заданного закона распределения вероятностей двухмерной случайной величины (Х, Y):
YX 2 5
8 0,15 0,10
10 0,22 0,23
12 0,10 0,20
Найти коэффициент корреляции между величинами Х и Y.

Задача 9. Задана дискретная двумерная случайная величина (X,Y).
А) найти безусловные законы распределения составляющих;
Б) построить регрессию случайной величины Y на X;
В) построить регрессию случайной величины X на Y;
Г) найти коэффициент ковариации;
Д) найти коэффициент корреляции.
20 30 40 50 70
3 0,01 0,01 0,02 0,02 0,01
4 0,04 0,3 0,06 0,03 0,01
5 0,02 0,03 0,06 0,07 0,05
9 0,05 0,03 0,04 0,02 0,03
10 0,03 0,02 0,01 0,01 0,02

Задача 10. Система (x, y) задана следующей двумерной таблицей распределения вероятностей. Определить:
А) безусловные законы распределения составляющих;
Б) условный закон распределения y при x=1;
В) условное математическое ожидание x при y=2.
Г) вероятность того, что случайная величина (x,y) будет принадлежать области $|x|+|y|le 3$.
-3 0 2
-1 0 0,1 0,15
1 0,05 0,3 0,05
2 0,15 0,05 0,15

Видео:Математическое ожидание дискретной случайной величиныСкачать

Математическое ожидание дискретной случайной величины

Решебник по теории вероятности онлайн

Больше 11000 решенных и оформленных задач по теории вероятности:

📽️ Видео

Математическое ожидание-3 типа задачСкачать

Математическое ожидание-3 типа задач

Теория вероятностей #18: системы двух случайных величин, двумерное распределениеСкачать

Теория вероятностей #18: системы двух случайных величин, двумерное распределение

Двумерное дискретное распределениеСкачать

Двумерное дискретное распределение

Корреляция и ковариация двумерной случайной величиныСкачать

Корреляция и ковариация двумерной случайной величины

Функция распределения дискретной случайной величиныСкачать

Функция распределения дискретной случайной величины

Функция распределения непрерывной случайной величины. Вероятность попадания в интервалСкачать

Функция распределения непрерывной случайной величины. Вероятность попадания в интервал

Теория вероятностей #12: случайная величина, плотность и функция распределенияСкачать

Теория вероятностей #12: случайная величина, плотность и функция распределения

Теория вероятностей #14: математ. ожидание, дисперсия, медиана, мода, начальные моментыСкачать

Теория вероятностей #14: математ. ожидание, дисперсия, медиана, мода, начальные моменты

Функция распределения и плотность распределенияСкачать

Функция распределения и плотность распределения

Условные и безусловные распределенияСкачать

Условные и безусловные распределения

Двумерные дискретные случайные величины. ТемаСкачать

Двумерные дискретные случайные величины. Тема

Зависимость компонент двумерного распределенияСкачать

Зависимость компонент двумерного распределения

Дискретная случайная величина и ее свойстваСкачать

Дискретная случайная величина и ее свойства

Теория вероятностей #19: ковариация, корреляция, зависимость двух случайных величинСкачать

Теория вероятностей #19: ковариация, корреляция, зависимость двух случайных величин

Дискретная двумерная случайная величина. Закон распределенияСкачать

Дискретная двумерная случайная величина.  Закон распределения
Поделиться или сохранить к себе: