Любые две хорды окружности пересекаются верно или нет

Теорема о пересекающихся хордах

Теорема о пересекающихся хордах. Произведения отрезков пересекающихся хорд окружности равны.

Любые две хорды окружности пересекаются верно или нет

Рассмотрим треугольники AOC и DOB.

(как опирающиеся на дугу BC).

Отсюда – что и требовалось доказать.

Видео:№662 (исправлено) Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°Скачать

№662 (исправлено) Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°

Это полезно

В нашей статье вы найдете всю необходимую теорию для решения задания №9 ЕГЭ по теме «Графики функций». Это задание появилось в 2022 году в вариантах ЕГЭ Профильного уровня.

Любые две хорды окружности пересекаются верно или нет

Любые две хорды окружности пересекаются верно или нет

Любые две хорды окружности пересекаются верно или нет

Любые две хорды окружности пересекаются верно или нет

Любые две хорды окружности пересекаются верно или нет

  • Любые две хорды окружности пересекаются верно или нет
  • Любые две хорды окружности пересекаются верно или нет
  • Любые две хорды окружности пересекаются верно или нет
  • Любые две хорды окружности пересекаются верно или нет

Наш онлайн-курс по Физике

Все темы ЕГЭ с нуля

Можно не только читать, но и смотреть новые объяснения и разборы на нашем YouTube канале!

Пожалуйста, подпишитесь на канал и нажмите колокольчик, чтобы не пропустить новые видео

Задавайте свои вопросы в комментариях и оставляйте задачи, которые вы хотите, чтобы мы разобрали.

Мы обязательно ответим!

Мы заметили, что Вы регулярно пользуетесь нашими материалами для подготовки по физике.

Результат будет выше, если готовиться по отработанной методике.

У нас есть онлайн-курсы как для абитуриентов, так и для преподавателей.

Видео:№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать

№8. Верно ли утверждение: а) если две точки окружности лежат в плоскости

Хорды пересекаются

Если хорды пересекаются, как этот факт можно использовать при решении задач?

Теорема

(Свойство отрезков пересекающихся хорд (пропорциональность хорд окружности))

Произведения длин отрезков пересекающихся хорд, на которые эти хорды делятся точкой пересечения, есть число постоянное.

То есть, если хорды AB и CD пересекаются в точке F, то

AF ∙ FB=CF ∙ FD

Любые две хорды окружности пересекаются верно или нетДано : окружность (O; R), AB и CD — хорды,

Любые две хорды окружности пересекаются верно или нет

Доказать : AF ∙ FB=CF ∙ FD

1) Проведём отрезки BC и AD.

2) Рассмотрим треугольники AFD и CFB.

Любые две хорды окружности пересекаются верно или нет∠AFD=∠CFB (как вертикальные);

Следовательно, треугольники AFD и CFB подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

Любые две хорды окружности пересекаются верно или нет

то есть отрезки пересекающихся хорд пропорциональны.

По основному свойству пропорции:

Любые две хорды окружности пересекаются верно или нет

Что и требовалось доказать .

При решении задач с пересекающимися хордами можно использовать не только вывод теоремы, но также полученный в ходе её доказательства факт, что пересекающиеся хорды образуют пары подобных треугольников.

Через точку M, лежащую внутри окружности, проведена хорда, которая делится точкой M на отрезки, длины которых равны 6 см и 16 см. Найти расстояние от точки M до центра окружности, если радиус окружности равен 14 см.

Любые две хорды окружности пересекаются верно или нетДано : окружность (O; R), R=14 см, AB — хорда, M∈AB, AM=16 см, MB=6 см

Проведём через точку M диаметр CD.

Любые две хорды окружности пересекаются верно или нетПо свойству отрезков пересекающихся хорд:

Пусть OM=x см (x>0). Так как радиус равен 14 см, то MD= (14-x) см, CM=(14+x) см.

Составим и решим уравнение:

Следовательно, расстояние от точки M до центра окружности равно 10 см.

В окружности проведены хорды AB и CD , пересекающиеся в точке F. Найти длину отрезка AC, если AF=6, DF=8, BD=20.

Любые две хорды окружности пересекаются верно или нетДано : окружность (O; R), AB и CD — хорды,

Любые две хорды окружности пересекаются верно или нет

В треугольниках AFC и BFD:

∠AFC=∠BFD (как вертикальные);

∠ACF=∠DBF (как вписанные углы, опирающиеся на одну хорду AD).

Следовательно, треугольники AFC и BFD подобны (по двум углам). Поэтому

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Избери верное утверждение. В ответе укажи его номер.1. Если две хорды

Выбери верное утверждение. В ответе укажи его номер.

1. Если две хорды окружности пересекаются, то творенье отрезков одной хорды одинаково творенью отрезков иной хорды.

2. Вписанный угол, опирающийся на полуокружность, острый.

3. Если при скрещении 2-ух прямых секущей сумма однобоких углов одинакова 360 градусов, то прямые параллельны.

  • Диана
  • Математика 2019-09-29 18:41:52 28 2

Любые две хорды окружности пересекаются верно или нет

Если две хорды окружности пересекаются, то творение отрезков одной хорды одинаково творению отрезков иной хорды.

2. Вписанный угол, опирающийся на полуокружность, острый.

3. Если при скрещении 2-ух прямых секущей сумма однобоких углов равна 360 градусов, то прямые параллельны.

💥 Видео

№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острыйСкачать

№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острый

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Хорды AC и BD окружности пересекаются в точке P, BP=6, CP=8, DP=12. Найдите AP.Скачать

Хорды AC и BD окружности пересекаются в точке P, BP=6, CP=8, DP=12. Найдите AP.

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Разбор задания 13 ОГЭ по математикеСкачать

Разбор задания 13 ОГЭ по математике

11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностьюСкачать

11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностью

Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)Скачать

Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)

Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать

Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |

Докажите, что произведение отрезков одной хорды равно произведению отрезков другой хордыСкачать

Докажите, что произведение отрезков одной хорды равно произведению отрезков другой хорды

Геометрия . 8 класс. Урок 01 "Окружность"Скачать

Геометрия . 8 класс.  Урок 01 "Окружность"

Задача от 84-летнего любителя математикиСкачать

Задача от 84-летнего любителя математики

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

ОГЭ/БАЗА Всё, что нужно знать про окружности в ОГЭ по математикеСкачать

ОГЭ/БАЗА Всё, что нужно знать про окружности в ОГЭ по математике

✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис ТрушинСкачать

✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис Трушин

ОГЭ 20 задание Какие утверждения верныСкачать

ОГЭ 20 задание  Какие утверждения верны
Поделиться или сохранить к себе: