Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Окружность, описанная около треугольника

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Определение окружности, описанной около треугольника

Определение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1).

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

При этом треугольник называется треугольником вписанным в окружность .

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Теорема об окружности, описанной около треугольника

Теорема 1. Около любого треугольника можно описать окружность.

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC.Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника.

Замечание 1. Около любого треугольника можно описать только одну окружность.

Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают.Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Видео:2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

Треугольник: вписанная и описанная окружности

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Окружность, вписанная в треугольник

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Окружность, описанная около треугольника

Окружность, проходящая через все вершины треугольника, называется описанной около треугольника окружностью.

  • Центр окружности, описанной около треугольника, является точкой пересечения серединных перпендикуляров сторон треугольника;
  • Радиус описанной окружности можно найти из теоремы синусов : a sin α = b sin β = c sin γ = 2 R frac=frac=frac=2R sin α a ​ = sin β b ​ = sin γ c ​ = 2 R .

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Центр окружности описанной около треугольника совпадает с точкой вписанной окружностиСерединный перпендикуляр к отрезку
Центр окружности описанной около треугольника совпадает с точкой вписанной окружностиОкружность описанная около треугольника
Центр окружности описанной около треугольника совпадает с точкой вписанной окружностиСвойства описанной около треугольника окружности. Теорема синусов
Центр окружности описанной около треугольника совпадает с точкой вписанной окружностиДоказательства теорем о свойствах описанной около треугольника окружности

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Полученное противоречие и завершает доказательство теоремы 2

Видео:Точка O центр окружности описанной около остроугольного треугольникаСкачать

Точка O центр окружности описанной около остроугольного треугольника

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Центр окружности описанной около треугольника совпадает с точкой вписанной окружностиВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаЦентр окружности описанной около треугольника совпадает с точкой вписанной окружностиОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиЦентр окружности описанной около треугольника совпадает с точкой вписанной окружностиЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиЦентр окружности описанной около треугольника совпадает с точкой вписанной окружностиЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовЦентр окружности описанной около треугольника совпадает с точкой вписанной окружности
Площадь треугольникаЦентр окружности описанной около треугольника совпадает с точкой вписанной окружности
Радиус описанной окружностиЦентр окружности описанной около треугольника совпадает с точкой вписанной окружности
Серединные перпендикуляры к сторонам треугольника
Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаЦентр окружности описанной около треугольника совпадает с точкой вписанной окружности

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиЦентр окружности описанной около треугольника совпадает с точкой вписанной окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиЦентр окружности описанной около треугольника совпадает с точкой вписанной окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиЦентр окружности описанной около треугольника совпадает с точкой вписанной окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовЦентр окружности описанной около треугольника совпадает с точкой вписанной окружности

Для любого треугольника справедливы равенства (теорема синусов):

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаЦентр окружности описанной около треугольника совпадает с точкой вписанной окружности

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиЦентр окружности описанной около треугольника совпадает с точкой вписанной окружности

Для любого треугольника справедливо равенство:

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Центр окружности описанной около треугольника совпадает с точкой вписанной окружности

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

🔥 Видео

Центры вписанной и описанной окружностей ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Центры вписанной и описанной окружностей ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

2031 окружность центром в точке О описана около равнобедренного треугольника ABCСкачать

2031 окружность центром в точке О описана около равнобедренного треугольника ABC

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Центры вписанной и описанной окружностей ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Центры вписанной и описанной окружностей ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

Геометрия 8 класс (Урок№32 - Вписанная окружность.)

Вписанная окружностьСкачать

Вписанная окружность

Равносторонний треугольникСкачать

Равносторонний треугольник

#1warmup. Разбор первой разминкиСкачать

#1warmup. Разбор первой разминки
Поделиться или сохранить к себе: