- Хорды пересекаются
- Теорема о пересекающихся хордах
- Это полезно
- Please wait.
- We are checking your browser. mathvox.ru
- Why do I have to complete a CAPTCHA?
- What can I do to prevent this in the future?
- Хорды пересекаются
- Окружность и круг
- теория по математике 📈 планиметрия
- Определения
- Свойство хорд
- Длина окружности
- Дуга, касательная, круг, сектор, сегмент
- Свойства касательной
- 🔍 Видео
Видео:Любые два диаметра окружности пересекаются. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Хорды пересекаются
Если хорды пересекаются, как этот факт можно использовать при решении задач?
Теорема
(Свойство отрезков пересекающихся хорд (пропорциональность хорд окружности))
Произведения длин отрезков пересекающихся хорд, на которые эти хорды делятся точкой пересечения, есть число постоянное.
То есть, если хорды AB и CD пересекаются в точке F, то
AF ∙ FB=CF ∙ FD
Дано : окружность (O; R), AB и CD — хорды,
Доказать : AF ∙ FB=CF ∙ FD
1) Проведём отрезки BC и AD.
2) Рассмотрим треугольники AFD и CFB.
∠AFD=∠CFB (как вертикальные);
Следовательно, треугольники AFD и CFB подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
то есть отрезки пересекающихся хорд пропорциональны.
По основному свойству пропорции:
Что и требовалось доказать .
При решении задач с пересекающимися хордами можно использовать не только вывод теоремы, но также полученный в ходе её доказательства факт, что пересекающиеся хорды образуют пары подобных треугольников.
Через точку M, лежащую внутри окружности, проведена хорда, которая делится точкой M на отрезки, длины которых равны 6 см и 16 см. Найти расстояние от точки M до центра окружности, если радиус окружности равен 14 см.
Дано : окружность (O; R), R=14 см, AB — хорда, M∈AB, AM=16 см, MB=6 см
Проведём через точку M диаметр CD.
По свойству отрезков пересекающихся хорд:
Пусть OM=x см (x>0). Так как радиус равен 14 см, то MD= (14-x) см, CM=(14+x) см.
Составим и решим уравнение:
Следовательно, расстояние от точки M до центра окружности равно 10 см.
В окружности проведены хорды AB и CD , пересекающиеся в точке F. Найти длину отрезка AC, если AF=6, DF=8, BD=20.
Дано : окружность (O; R), AB и CD — хорды,
В треугольниках AFC и BFD:
∠AFC=∠BFD (как вертикальные);
∠ACF=∠DBF (как вписанные углы, опирающиеся на одну хорду AD).
Следовательно, треугольники AFC и BFD подобны (по двум углам). Поэтому
Видео:№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать
Теорема о пересекающихся хордах
Теорема о пересекающихся хордах. Произведения отрезков пересекающихся хорд окружности равны.
Рассмотрим треугольники AOC и DOB.
(как опирающиеся на дугу BC).
Отсюда – что и требовалось доказать.
Видео:№662 (исправлено) Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°Скачать
Это полезно
В нашей статье вы найдете всю необходимую теорию для решения задания №9 ЕГЭ по теме «Графики функций». Это задание появилось в 2022 году в вариантах ЕГЭ Профильного уровня.
Наш онлайн-курс по Физике
Все темы ЕГЭ с нуля
Можно не только читать, но и смотреть новые объяснения и разборы на нашем YouTube канале!
Пожалуйста, подпишитесь на канал и нажмите колокольчик, чтобы не пропустить новые видео
Задавайте свои вопросы в комментариях и оставляйте задачи, которые вы хотите, чтобы мы разобрали.
Мы обязательно ответим!
Мы заметили, что Вы регулярно пользуетесь нашими материалами для подготовки по физике.
Результат будет выше, если готовиться по отработанной методике.
У нас есть онлайн-курсы как для абитуриентов, так и для преподавателей.
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать
Please wait.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
We are checking your browser. mathvox.ru
Видео:Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать
Why do I have to complete a CAPTCHA?
Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.
Видео:№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острыйСкачать
What can I do to prevent this in the future?
If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.
If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.
Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.
Cloudflare Ray ID: 6d0a7b0e4ff83a83 • Your IP : 85.95.179.65 • Performance & security by Cloudflare
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Хорды пересекаются
Если хорды пересекаются, как этот факт можно использовать при решении задач?
Теорема
(Свойство отрезков пересекающихся хорд (пропорциональность хорд окружности))
Произведения длин отрезков пересекающихся хорд, на которые эти хорды делятся точкой пересечения, есть число постоянное.
То есть, если хорды AB и CD пересекаются в точке F, то
AF ∙ FB=CF ∙ FD
Дано : окружность (O; R), AB и CD — хорды,
Доказать : AF ∙ FB=CF ∙ FD
1) Проведём отрезки BC и AD.
2) Рассмотрим треугольники AFD и CFB.
∠AFD=∠CFB (как вертикальные);
Следовательно, треугольники AFD и CFB подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
то есть отрезки пересекающихся хорд пропорциональны.
По основному свойству пропорции:
Что и требовалось доказать .
При решении задач с пересекающимися хордами можно использовать не только вывод теоремы, но также полученный в ходе её доказательства факт, что пересекающиеся хорды образуют пары подобных треугольников.
Через точку M, лежащую внутри окружности, проведена хорда, которая делится точкой M на отрезки, длины которых равны 6 см и 16 см. Найти расстояние от точки M до центра окружности, если радиус окружности равен 14 см.
Дано : окружность (O; R), R=14 см, AB — хорда, M∈AB, AM=16 см, MB=6 см
Проведём через точку M диаметр CD.
По свойству отрезков пересекающихся хорд:
Пусть OM=x см (x>0). Так как радиус равен 14 см, то MD= (14-x) см, CM=(14+x) см.
Составим и решим уравнение:
Следовательно, расстояние от точки M до центра окружности равно 10 см.
В окружности проведены хорды AB и CD , пересекающиеся в точке F. Найти длину отрезка AC, если AF=6, DF=8, BD=20.
Дано : окружность (O; R), AB и CD — хорды,
В треугольниках AFC и BFD:
∠AFC=∠BFD (как вертикальные);
∠ACF=∠DBF (как вписанные углы, опирающиеся на одну хорду AD).
Следовательно, треугольники AFC и BFD подобны (по двум углам). Поэтому
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Окружность и круг
теория по математике 📈 планиметрия
Определения
Окружность – множество всех точек плоскости, равноудаленных от одной данной точки (центра окружности). Другими словами – это замкнутая линия, длину которой можно измерить.
На рисунке центр окружности обозначен точкой О. Определения
Радиус – расстояние от центра до любой точки окружности. На рисунке радиус обозначен АО. Все радиусы одной окружности равны. Радиус можно обозначать латинскими буквами R или r.
Диаметр – отрезок, который соединяет две точки окружности и проходит через её центр. На рисунке диаметр обозначен АВ. Все диаметры одной окружности равны. В одном диаметре содержится два радиуса. Диаметр обозначается буквой d.
Хорда – отрезок, соединяющий две любые точки окружности. На рисунке это отрезок CD.
Свойство хорд
Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды. Так, на рисунке показаны две пересекающиеся хорды, одна состоит из отрезков a и b, вторая из отрезков d и с, следовательно, ab=dс.
Длина окружности
Длину окружности можно вычислить по формуле:
C=2πR, где π=3,14.
Дуга – часть окружности, которая соединяет две точки. На рисунке мы видим несколько дуг, например, дуги CD (малая и большая). Дуга АВ – называется полуокружностью, так как стягивает концы диаметра. Обозначается дуга значком ∪АВ.
Видео:Окружность. 7 класс.Скачать
Дуга, касательная, круг, сектор, сегмент
Из точки, не лежащей на окружности можно провести касательную – прямую, которая имеет с окружностью только одну общую точку (рисунок 4).
Свойства касательной
На рисунке видно, что АХ=ВХ, угол АХО равен углу ВХО.
Угол АВС (образован касательной АВ и хордой ВС) равен половине дуги m.
Круг – часть плоскости, ограниченная окружностью. Другими словами, круг – это всё, что находится внутри окружности.
Площадь круга вычисляется по формуле:
S=πR 2 , где π=3,14.
Сектор и его площадь
Сектор – область круга, ограниченная двумя радиусами. На рисунке сектор выделен сиреневым цветом, он ограничен радиусами ОА и ОВ.
Площадь кругового сектора вычисляется по формуле:
S= π R 2 360 . . × α , где α – угол между радиусами.
Сегмент – это область круга, ограниченная хордой и дугой. На рисунке сегмент выделен сиреневым цветом. Также можно сказать, что это часть круга, отсекаемая от него хордой. На рисунке видно, как хорда АВ отсекает сегмент.
🔍 Видео
11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностьюСкачать
Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать
Две теоремы об отрезках, связанных с окружностьюСкачать
Окружность. Длина хорды. Теорема синусов.Скачать
Длина окружности. Математика 6 класс.Скачать
Разбор задания 13 ОГЭ по математикеСкачать
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Докажите, что произведение отрезков одной хорды равно произведению отрезков другой хордыСкачать
Окружнось. Зависимость длины хорды, от длины дуги.Скачать
Две великолепные задачи! Секретные способы решения!Скачать