Любой ромб можно вписать окружность верно или неверно

Любой ромб можно вписать окружность верно или неверно

Какие из следующих утверждений верны?

1) Все высоты равностороннего треугольника равны.

2) Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу.

3) В любой ромб можно вписать окружность.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Все высоты равностороннего треугольника равны» — верно, так как в равностороннем треугольнике все высоты равны между собой.

2) «Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу» — неверно, так как угол, вписанный в окружность, равен половине соответствующего центрального угла, опирающегося на ту же дугу.

3) «В любой ромб можно вписать окружность» — верно, так как суммы противоположных сторон ромба равны.

Видео:В любой ромб можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

В любой ромб можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Любой ромб можно вписать окружность верно или неверно

Задание 20. Какие из следующих утверждений верны?

1) Все высоты равностороннего треугольника равны.

2) Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу.

3) В любой ромб можно вписать окружность.

1) Да, в равностороннем треугольнике высоты равны между собой.

2) Нет, вписанный угол в 2 раза меньше соответствующего центрального угла.

3) Да, в четырехугольник можно вписать окружность, если суммы длин его противоположных сторон равны. У ромба это правило соблюдается всегда.

Видео:№700. Докажите, что в любой ромб можно вписать окружность.Скачать

№700. Докажите, что в любой ромб можно вписать окружность.

Задание №20 ОГЭ по математике

Видео:В любой прямоугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

В любой прямоугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Анализ геометрических высказываний

В 20 задании из приведенных утверждений необходимо выбрать одно или несколько правильных. Утверждения из общего теоретического курса геометрии, поэтому, какие-то определенные рекомендации здесь дать нельзя, кроме как полного повторения теоретического курса. Другое дело, что если вы точно не знаете какое-либо утверждение, то решить задачу можно наоборот — выбирая и отсеивая неправильные. Это задание не имеет какого либо подхода к решению, однако ниже я привел несколько разобранных задач.

Разбор типовых вариантов задания №20 ОГЭ по математике

Первый вариант задания

Какие из следующих утверждений верны?

  1. Все диаметры окружности равны между собой.
  2. Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу.
  3. Любые два равносторонних треугольника подобны.
Решение:

Все диаметры окружности всегда равны между собой — это даже интуитивно понятно. Что касается второго утверждения, то оно неверно — вписанный угол всегда в два раза меньше центрального. А вот третье утверждение тоже верно — треугольники могут быть подобны по трем углам, а у равносторонних треугольников они всегда равны.

Второй вариант задания

Какие из следующих утверждений верны?

  1. Все высоты равностороннего треугольники равны.
  2. Существуют три прямые, которые проходят через одну точку.
  3. Если диагонали параллелограмма равны, то он является ромбом.
Решение:

Первое утверждение верно, так как у равностороннего треугольника все стороны равнозначны, а значит и все элементы, проведенные к ним, тоже. Второе утверждение тоже верно, так как нет ограничений на количество произвольных прямых, проходящих через одну точку. Третье утверждение неверно — если диагонали равны, то это либо прямоугольник, либо квадрат.

Третий вариант задания

Какие из следующих утверждений верны?

  1. Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
  2. Любой прямоугольник можно вписать в окружность.
  3. Через заданную точку плоскости можно провести единственную прямую.
Решение:

Первое утверждение верно из общих свойств треугольника — сумма двух сторон всегда больше третьей. Второе утверждение тоже верно — действительно, любой прямоугольник можно вписать в окружность. Третье утверждение неверно, так как я писал уже чуть выше, что нет ограничений на количество произвольных прямых, проходящих через одну точку.

Демонстрационный вариант ОГЭ 2019

Укажите номера верных утверждений.

  1. Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
  2. Треугольник со сторонами 1, 2, 4 существует.
  3. Если в ромбе один из углов равен 90° , то такой ромб — квадрат.
  4. В любом параллелограмме диагонали равны.
Решение:

Проанализируем каждое из утверждений:

1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.

Да, такое утверждение в геометрии есть, с дополнением » и только одну» :

«Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой, и причем только одну.»

2) Треугольник со сторонами 1, 2, 4 существует.

Для существования треугольника должно выполняться следующее правило:

Сумма двух сторон всегда больше третьей. В данном случае это не так, так как 1 + 2

Четвертый вариант задания

Какое из следующих утверждений верно?

1) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом.

2) Смежные углы всегда равны.

3) Каждая из биссектрис равнобедренного треугольника является его высотой.

Решение:

Проанализируем каждое утверждение.

1) Это утверждение верно, поскольку равенство и перпендикулярность диагоналей является одним из свойств именно квадрата.

2) Это утверждение неверно. Основание – соответствующая теорема, которой утверждается, что смежные углы в сумме имеют 180 0 , т.е. дополняют друг друга до развернутого угла. Следовательно, равенство смежных углов может иметь место только в случае, если достоверно известно, что один из них прямой.

3) Утверждение неверно. Высотой является только биссектриса, опущенная на основание равнобедренного треугольника.

Пятый вариант задания

Какое из следующих утверждений верно?

1) Если угол острый, то смежный с ним угол также является острым.

2) Если диагонали параллелограмма перпендикулярны, то этот параллелограмм является ромбом.

3) Касательная к окружности параллельна радиусу, проведённому в точку касания.

Решение:

Выполняем анализ утверждений.

1) Согласно теореме о смежных углах, их сумма всегда равна 180 0 . Это означает, что любой из смежных углов является разностью 180 0 и величины 2-го смежного угла. Если первый смежный угол острый, значит, второй равен разности 180 0 и острого угла (т.е. угла, меньшего 90 0 ), которая в любом случае окажется больше 90 0 . А угол, больший 90 0 , по определению тупой. Итак, утверждение неверно.

2) Одно из свойств ромба заключается в том, что его диагонали перпендикулярны. Однако и диагонали квадрата тоже пересекаются под прямым углом. Но поскольку квадрат является частным случаем ромба, то и в этом противоречия заданному утверждению нет. Т.е. в целом утверждение верно.

3) Одно из основных св-в касательных к окружности заключается в том, что касательная всегда перпендикулярна к радиусу, проведенному из центра этой окружности в точку касания. Оно противоречит заданному утверждению, поэтому утверждение неверно.

📽️ Видео

В любой четырёхугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

В любой четырёхугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Если в четырёхугольник можно вписать окружностьСкачать

Если в четырёхугольник можно вписать окружность

Утверждения на ОГЭ - наш козырь на экзамене! / Готовимся к сентябрьской пересдаче ОГЭ! #3Скачать

Утверждения на ОГЭ - наш козырь на экзамене! / Готовимся к сентябрьской пересдаче ОГЭ! #3

№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать

№8. Верно ли утверждение: а) если две точки окружности лежат в плоскости

Любой прямоугольник можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Любой прямоугольник можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Все задачи на 3 | Математика ОГЭ 2023 | УмскулСкачать

Все задачи на 3 | Математика ОГЭ 2023 | Умскул

В любой треугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

В любой треугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

ОГЭ ЗАДАНИЕ 19 #математика #огэ #2023Скачать

ОГЭ ЗАДАНИЕ 19 #математика #огэ #2023

ОГЭ вариант-6 #13Скачать

ОГЭ вариант-6 #13

Как решить вторую часть на максимум? | Математика ОГЭ 2023 | УмскулСкачать

Как решить вторую часть на максимум? | Математика ОГЭ 2023 | Умскул

№696. Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.Скачать

№696. Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.

Разбор задания 13 ОГЭ по математикеСкачать

Разбор задания 13 ОГЭ по математике

19 задание огэ математика 2023 ВСЕ ТИПЫ геометрияСкачать

19 задание огэ математика 2023 ВСЕ ТИПЫ геометрия

ОГЭ по математике 2024 разбор 17 варианта Ященко и ФИПИ / ПДФ решение + формулы / МатТаймСкачать

ОГЭ по математике 2024 разбор 17 варианта Ященко и ФИПИ / ПДФ решение + формулы / МатТайм

ПЛОЩАДЬ КОЛЬЦА. Сделай выбор: на чьей ты стороне?Скачать

ПЛОЩАДЬ КОЛЬЦА. Сделай выбор: на чьей ты стороне?

Любой параллелограмм можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Любой параллелограмм можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

ВСЕ ТИПЫ 19 задания на ОГЭ по математике 2024 | Дядя АртёмСкачать

ВСЕ ТИПЫ 19 задания на ОГЭ по математике 2024 | Дядя Артём
Поделиться или сохранить к себе: