Движение точки по окружности задано уравнением s 2t 3

iSopromat.ru

Движение точки по окружности задано уравнением s 2t 3

Пример решения задачи по определению нормального, касательного и модуля полного ускорения точки, а также, угла с вектором скорости, точки, движущейся по окружности заданного радиуса и известному закону заданному уравнением.

Видео:Равномерное движение точки по окружности | Физика 10 класс #7 | ИнфоурокСкачать

Равномерное движение точки по окружности | Физика 10 класс #7 | Инфоурок

Задача

Точка движется по окружности радиуса R=4 м, закон ее движения определяется уравнением s=4,5t 3 ( s в метрах, t в секундах).

Определить модуль полного ускорения и угол φ его с вектором скорости в тот момент t1, когда скорость будет равна 6 м/с (рисунок 1.6).

Движение точки по окружности задано уравнением s 2t 3

Видео:Кинематика точки Движение по окружностиСкачать

Кинематика точки  Движение по окружности

Решение

Дифференцируя s по времени, находим модуль вектора скорости точки

Движение точки по окружности задано уравнением s 2t 3
Движение точки по окружности задано уравнением s 2t 3

Подставляя в это выражение значение скорости, получим 6=13,5t1 2 , откуда находим

Движение точки по окружности задано уравнением s 2t 3

Касательное ускорение для любого момента времени равно

Движение точки по окружности задано уравнением s 2t 3

Так как для окружности радиус кривизны ρ=R, то нормальное ускорение для любого момента времени равно

Модуль вектора полного ускорения точки равен

Движение точки по окружности задано уравнением s 2t 3

Угол между вектором полного ускорения и вектором скорости определим следующим образом:

Видео:Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)Скачать

Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)

Движение точки по окружности задано уравнением s 2t 3

тангенциальное нормальное полное ускорения

Колесо с радиусом 0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = 5+t+2t 2 +t 3 рад. Для точек, лежащих на ободе колеса, определить угловую скорость, угловое, нормальное, тангенциальное и полное ускорения к концу второй секунды. Какой угол образует вектор полного ускорения и вектор линейной скорости?

Материальная точка движется по окружности радиуса 1 м согласно уравнению s = 8t – 0,2t 3 . Найти скорость, тангенциальное, нормальное и полное ускорение в момент времени 3 с.

Колесо радиусом 0,3 м вращается согласно уравнению φ = 5–2t+0,3t 2 . Найти нормальное, тангенциальное и полное ускорение точек на ободе колеса через 5 с после начала движения.

Шарик массы т = 100 г, подвешенный на нити, отвели в сторону так, что нить образовала прямой угол с вертикалью, а затем отпустили. Найти: 1) тангенциальное, нормальное и полное ускорение и натяжение нити в зависимости от угла θ отклонения нити от вертикали; 2) натяжение нити в тот момент, когда вертикальная составляющая скорости шарика максимальна.

Используя данные предыдущей задачи, определить: 1) частоту вращения диска в момент времени t2 в об/с и об/мин; 2) в момент времени t2 определить скорость, нормальное, тангенциальное и полное ускорение точек, находящихся на расстоянии 10 см от оси вращения.
Данные из предыдущей задачи: t2 = 15 с; ω(t2) = 11,8 рад/с; β(t2) = 1,1 рад/с 2 .
Предыдущая задача: Диск вращается согласно уравнению φ = а + bt + ct 2 + dt 3 , где φ — угол поворота радиуса в радианах, t — время в секундах. Определить угловую скорость и ускорение в моменты времени t1 = 11 с и t2 = 15 с. Каковы средние значения угловой скорости и углового ускорения в промежутке времени от t1 = 11 до t2 = 15 с включительно, если для Вашего варианта а = 1, b = 2 с –1 , с = 0,1 с –2 , d = 0,01 с –3 ?

Точка движется по кругу так, что зависимость пути от времени задается уравнением: S = А + Bt +Ct 2 , где В = –2 м/с и С = 1 м/с 2 . Найти линейную скорость точки, ее тангенциальное, нормальное и полное ускорение через 3 с после начала движения, если известно, что нормальное ускорение в момент времени 2 с составляет 0,5 м/с 2 .

Найти нормальное, тангенциальное и полное ускорение электрона на произвольной стационарной орбите в ионе Не+.

Движение точки по окружности радиуса R = 4 м задано уравнением: S = A+Bt+Ct 2 . Определить тангенциальное, нормальное и полное ускорение точки в момент времени t = 2 с, если А = 10 м, В = –2 м/с и С = 1 м/с 2 .

Автомобиль движется по закруглению шоссе, имеющему радиус кривизны 50 м. Длина пути автомобиля выражается уравнением S = 10+10t+0,5t 2 (путь — в метрах, время — в секундах). Найти скорость автомобиля, его тангенциальное, нормальное и полное ускорения через 5 с после начала движения.

Материальная точка движется по окружности радиуса 80 см по закону S = 10t–0,1t 3 (путь в метрах, время в секундах). Найти скорость, тангенциальное, нормальное и полное ускорения через 2 с после начала движения.

Материальная точка движется по окружности диаметром 40 м. Зависимость ее координаты от времени движения определяется уравнением S = t 3 +4t 2 –3t+8. В какой момент точка изменяет направление движения? Определить пройденный путь, скорость, нормальное, тангенциальное и полное ускорение движущейся точки через 4 с после начала движения.

Тело движется по криволинейной траектории. Пройденный путь меняется со временем по закону s = 2 + 0,5t 2 , м. Определить нормальное, тангенциальное и полное ускорение при t = 1 с. Радиус кривизны траектории движения в этот момент времени равен 50 см. Какова средняя скорость за 1 с движения?

Материальная точка начала вращаться с постоянным угловым ускорением из положения 1 и через 0,1 с оказалась в положении 2. Найти угловые ускорение и скорость в точке 2. Указать направления тангенциального, нормального и полного ускорений, а также линейной и угловой скоростей для положения 2.
Движение точки по окружности задано уравнением s 2t 3

Движение точки по окружности радиусом R = 2 м задано уравнением φ = A+Bt+Ct 2 , где А = 10 м, В = –3 м/с, С = 2 м/с 2 . Найти тангенциальное, нормальное и полное ускорения точки в момент времени t = 2 с.

Видео:Физика 10 Равномерное движение точки по окружностиСкачать

Физика 10 Равномерное движение точки по окружности

Движение точки по окружности задано уравнением s 2t 3

Движение точки по окружности задано уравнением s 2t 3

Глава 7. Кинематика точки.

7.8. Ускорение точки при естественном способе задания движения.

7.8.1. Даны нормальное аn = 2,5 м/с 2 и касательное аτ = 1,5 м/с 2 уско­рения точки. Определить полное ускорение точки. (Ответ 2,92)

7.8.2. Определить модуль ускорения точки, если его вектор а = 2,5n + 3,5τ, где n и τ — орты естественного триэдра. (Ответ 4,30)

7.8.3. Точка движется по криволинейной траектории с касательным ус­корением аτ = 1,4 м/с 2 . Определить нормальное ускорение точки в момент времени, когда ее полное ускорение а = 2,6 м/с 2 . (Ответ 2,19)

7.8.4. Определить нормальное ускорение точки в момент времени, ког­да ускорение точки а = 1,5 м/с 2 , а угол между векторами ускорения и скорости равен 65°. (Ответ 1,36)

7.8.5. Точка движется по окружности. Определить радиус окружности, если в момент времени, когда скорость v = 10 м/с, вектор ускорения и вектор скорости, равный по модулю 1,2 м/с, образуют угол 30°. (Ответ 167)

7.8.6. Дан график касательного ускорения аτ = аτ (t) движения точки по окружности ради­уса 9 м. Определить полное ускорение в мо­мент времени t = 2 с, если при to = 0 скорость точки v0 = 0.
(Ответ 3,74)

7.8.7. Ускорение точки а = 1 м/с. Векторы ускорения и скорости обра­зуют угол 45°. Определить скорость в км/ч, если радиус кривизны траектории ρ = 300 м. (Ответ 52,4)

7.8.8. Точка движется по окружности, радиус которой r = 200 м, с касательным ускорением 2 м/с 2 . Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени, когда ее скорость v = 10 м/с. (Ответ 14,0)

7.8.9. Точка движется по окружности, радиус которой r = 50 м, со скоростью v = 2t. Определить модуль полного ускорения в момент времени t = 5 с. (Ответ 2,83)

7.8.10. Задано уравнение движения точки по криволинейной траекто­рии: s = 0,2t 2 + 0,3t. Определить полное ускорение точки в момент времени t = 3 с, если в этот момент радиус кривизны траектории ρ = 1,5 м. (Ответ 1,55)

7.8.11. Определить скорость точки в момент времени, когда радиус кри­визны траектории ρ = 5 м, касательное ускорение аτ = 2 м/с 2 , а tgβ = 3, где β — угол между векторами скорости и ускорения точки (Ответ 5,48)

7.8.12. Даны графики ускорения аτ = аτ(t) и аn = an(t). Определить, какой угол в градусах образует полное ускорение с направлением скорости в момент времени t = 3 с. (Ответ 56,3)

7.8.13. По окружности радиуса r = 6 м движется точка со скоростью v = 3t. Определить угол в градусах между ускорением и скоростью точки в момент времени t = 1 с. (Ответ 26,6)

7.8.14. Точка движется по окружности радиуса r = 9 м. Определить скорость точки в момент времени, когда касательное ускорение аτ = 2 м/с 2 , а вектор полного ускорения а образует угол 70 o c касательной к траектории. (Ответ 7,03)

7.8.15. Дан график скорости v = v(t) движения точки по окружности радиуса 8 м. Определить полное ускорение в момент времени t = 4 с. (Ответ 2,24)

7.8.16. Точка движется но окружности радиуса r = 200 м из состояния покоя с постоянным касательным ускорением аτ = 1 м/с 2 . Опреде­лить полное ускорение точки в момент времени t = 20 с. (Ответ 2,24)

7.8.17. Точка движется по окружности радиуса r = 2 м. Нормальное ускорение точки меняется согласно закону аn = 2t 2 . Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени t = 1 с. (Ответ 45)

7.8.18. Задан закон движении точки по траектории: s = 0,5t 2 . Опреде­лить угол в градусах между векторами скорости и полного ускорения точки в момент времени t1 = 3 с, когда радиус кривизны ρ = 4 м. (Ответ 66,0)

7.8.19. По окружности радиуса r = 1м движется точка согласно урав­нению s = 0,1t 3 . Определить полное ускорение точки в момент вре­мени t = 2 с. (Ответ 1,87)

7.8.20. Точка движется по криволинейной траектории с касательным ускорением аτ = 2 м/с 2 . Определить угол в градусах между векто­рами скорости и полного ускорении точки в момент времени t = 2 с, когда радиус кривизны траектории ρ = 4м, если при t0 = 0 скорость точки v0 = 0. (Ответ 63,4)

Движение точки по окружности задано уравнением s 2t 3

Движение точки по окружности задано уравнением s 2t 3

Движение точки по окружности задано уравнением s 2t 3

Движение точки по окружности задано уравнением s 2t 3

Сборник коротких задач по теоретической механике.
Кепе О.Э.

Книга состоит из 1757 заданий которые предназначены для бысторого
контроля знаний на занятиях и зачетах а также для допуска к экзамену.
Задачи имеют ответы.

Издательство «Высшая школа» 1989 Москва

Также решение задач Кепе можно скачать здесь:
Мобильное приложение для Андроид:

📹 Видео

Физика - движение по окружностиСкачать

Физика - движение по окружности

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Точка движется по окружности радиусом R=2см. Волькенштейн 1.47Скачать

Точка движется по окружности радиусом R=2см. Волькенштейн 1.47

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорение

Криволинейное, равномерное движение материальной точки по окружности. Практическая часть. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. Практическая часть. 9 класс.

Движение материальной точки по окружности | Физика ЕГЭ, ЦТСкачать

Движение материальной точки по окружности | Физика ЕГЭ, ЦТ

Решение графических задач на равномерное движениеСкачать

Решение графических задач на равномерное движение

ЕГЭ по Физике 2022. Движение точки по окружностиСкачать

ЕГЭ по Физике 2022. Движение точки по окружности

Урок 89. Движение по окружности (ч.1)Скачать

Урок 89. Движение по окружности (ч.1)

РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ физика 9 ПерышкинСкачать

РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ физика 9 Перышкин

Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Кинематика. Решение задач на движение по окружности. Урок 5Скачать

Кинематика. Решение задач на движение по окружности. Урок 5

Физика | Равномерное движение по окружностиСкачать

Физика | Равномерное движение по окружности

Кинематика. Движение по окружности. Урок 4Скачать

Кинематика. Движение по окружности. Урок 4

Задача на движение материальной точки - bezbotvyСкачать

Задача на движение материальной точки - bezbotvy

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)Скачать

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)
Поделиться или сохранить к себе: