Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90° , то эти две прямые параллельны.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.
Проверим каждое из утверждений.
1) «Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90° , то эти две прямые параллельны» — верно, по признаку параллельности прямых.
2) «В любой треугольник можно вписать окружность» — верно, по свойству треугольника.
3) «Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом» — верно, поскольку если его смежные стороны равны, то и все его стороны равны..
- Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
- Задание №20 ОГЭ по математике
- Анализ геометрических высказываний
- Разбор типовых вариантов задания №20 ОГЭ по математике
- Первый вариант задания
- Второй вариант задания
- Третий вариант задания
- Демонстрационный вариант ОГЭ 2019
- Четвертый вариант задания
- Пятый вариант задания
- 📸 Видео
Видео:Любой прямоугольник можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.
Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.
Вокруг любого треугольника можно описать окружность, причем только одну.
Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.
В любой треугольник можно вписать окружность, причем только одну.
Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.
Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?
В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.
Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.
Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.
— радиус окружности, вписанной в треугольник.
Есть и еще одна формула, применяемая в основном в задачах части :
где — стороны треугольника, — радиус описанной окружности.
Для любого треугольника верна теорема синусов:
Ты нашел то, что искал? Поделись с друзьями!
. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .
Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .
Запишем площадь треугольника АВС двумя способами:
Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .
В ответ запишем .
. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.
По теореме синусов,
Получаем, что . Угол — тупой. Значит, он равен .
. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.
Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.
, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .
Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .
Видео:ОСОБЕННОСТЬ окружностей) прям. треугольника ✧ Запомнить за 1 мин! #геометрия #егэ #огэСкачать
Задание №20 ОГЭ по математике
Видео:Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать
Анализ геометрических высказываний
В 20 задании из приведенных утверждений необходимо выбрать одно или несколько правильных. Утверждения из общего теоретического курса геометрии, поэтому, какие-то определенные рекомендации здесь дать нельзя, кроме как полного повторения теоретического курса. Другое дело, что если вы точно не знаете какое-либо утверждение, то решить задачу можно наоборот — выбирая и отсеивая неправильные. Это задание не имеет какого либо подхода к решению, однако ниже я привел несколько разобранных задач.
Разбор типовых вариантов задания №20 ОГЭ по математике
Первый вариант задания
Какие из следующих утверждений верны?
- Все диаметры окружности равны между собой.
- Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу.
- Любые два равносторонних треугольника подобны.
Решение:
Все диаметры окружности всегда равны между собой — это даже интуитивно понятно. Что касается второго утверждения, то оно неверно — вписанный угол всегда в два раза меньше центрального. А вот третье утверждение тоже верно — треугольники могут быть подобны по трем углам, а у равносторонних треугольников они всегда равны.
Второй вариант задания
Какие из следующих утверждений верны?
- Все высоты равностороннего треугольники равны.
- Существуют три прямые, которые проходят через одну точку.
- Если диагонали параллелограмма равны, то он является ромбом.
Решение:
Первое утверждение верно, так как у равностороннего треугольника все стороны равнозначны, а значит и все элементы, проведенные к ним, тоже. Второе утверждение тоже верно, так как нет ограничений на количество произвольных прямых, проходящих через одну точку. Третье утверждение неверно — если диагонали равны, то это либо прямоугольник, либо квадрат.
Третий вариант задания
Какие из следующих утверждений верны?
- Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
- Любой прямоугольник можно вписать в окружность.
- Через заданную точку плоскости можно провести единственную прямую.
Решение:
Первое утверждение верно из общих свойств треугольника — сумма двух сторон всегда больше третьей. Второе утверждение тоже верно — действительно, любой прямоугольник можно вписать в окружность. Третье утверждение неверно, так как я писал уже чуть выше, что нет ограничений на количество произвольных прямых, проходящих через одну точку.
Демонстрационный вариант ОГЭ 2019
Укажите номера верных утверждений.
- Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
- Треугольник со сторонами 1, 2, 4 существует.
- Если в ромбе один из углов равен 90° , то такой ромб — квадрат.
- В любом параллелограмме диагонали равны.
Решение:
Проанализируем каждое из утверждений:
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
Да, такое утверждение в геометрии есть, с дополнением » и только одну» :
«Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой, и причем только одну.»
2) Треугольник со сторонами 1, 2, 4 существует.
Для существования треугольника должно выполняться следующее правило:
Сумма двух сторон всегда больше третьей. В данном случае это не так, так как 1 + 2
Четвертый вариант задания
Какое из следующих утверждений верно?
1) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом.
2) Смежные углы всегда равны.
3) Каждая из биссектрис равнобедренного треугольника является его высотой.
Решение:
Проанализируем каждое утверждение.
1) Это утверждение верно, поскольку равенство и перпендикулярность диагоналей является одним из свойств именно квадрата.
2) Это утверждение неверно. Основание – соответствующая теорема, которой утверждается, что смежные углы в сумме имеют 180 0 , т.е. дополняют друг друга до развернутого угла. Следовательно, равенство смежных углов может иметь место только в случае, если достоверно известно, что один из них прямой.
3) Утверждение неверно. Высотой является только биссектриса, опущенная на основание равнобедренного треугольника.
Пятый вариант задания
Какое из следующих утверждений верно?
1) Если угол острый, то смежный с ним угол также является острым.
2) Если диагонали параллелограмма перпендикулярны, то этот параллелограмм является ромбом.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.
Решение:
Выполняем анализ утверждений.
1) Согласно теореме о смежных углах, их сумма всегда равна 180 0 . Это означает, что любой из смежных углов является разностью 180 0 и величины 2-го смежного угла. Если первый смежный угол острый, значит, второй равен разности 180 0 и острого угла (т.е. угла, меньшего 90 0 ), которая в любом случае окажется больше 90 0 . А угол, больший 90 0 , по определению тупой. Итак, утверждение неверно.
2) Одно из свойств ромба заключается в том, что его диагонали перпендикулярны. Однако и диагонали квадрата тоже пересекаются под прямым углом. Но поскольку квадрат является частным случаем ромба, то и в этом противоречия заданному утверждению нет. Т.е. в целом утверждение верно.
3) Одно из основных св-в касательных к окружности заключается в том, что касательная всегда перпендикулярна к радиусу, проведенному из центра этой окружности в точку касания. Оно противоречит заданному утверждению, поэтому утверждение неверно.
📸 Видео
В любой треугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Тема 8. Прямоугольный треугольник и его описанная и вписанная окружностиСкачать
Прямоугольный треугольник Полное досьеСкачать
Вписанный в окружность прямоугольный треугольник.Скачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Вписанная и описанная окружность - от bezbotvyСкачать
ОГЭ как найти тангенс угла, если нет треугольника #математика #огэ #огэматематика #геометрияСкачать
Гипотенуза прямоугольного треугольникаСкачать
№700. Докажите, что в любой ромб можно вписать окружность.Скачать
Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать
№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,Скачать
Малоизвестное свойство прям. треугольника ✧ Запомнить за 1 мин! #геометрияСкачать
Важное свойство прямоугольного треугольника! Подписывайся 👌🏻 #dimath #егэ #математика #репетиторСкачать
Решение задания №19 варианта 2 из ОГЭ по математике Ященко 36 вариантов ФИПИ 2023 Ответы ГДЗСкачать
Построить описанную окружность (Задача 1)Скачать
Вокруг любого треугольника можно описать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. ДляСкачать