- Метки
- Пересечение конуса и сферы пошаговое построение
- Взаимное пересечение поверхностей тел с примерами и образцами выполнения
- Пересечение прямой линии с поверхностями тел
- Линии пересечения и перехода
- Общие правила построения линий пересечения поверхностей
- Пересечение поверхностей цилиндра и призмы
- Пересечение цилиндрических поверхностей
- Пересечение поверхностей многогранников
- Пересечение поверхностей цилиндра и конуса
- Пересечение поверхностей сферы и цилиндра
- Пересечение поверхностей тора и цилиндра
- Построение линий пересечения поверхностей способом вспомогательных сфер
- Пересечение поверхностей и способы построения линий пресечения
- Пересечение поверхностей и способы построения линий пресечения
- Частные случаи пересечения поверхностей
- Пересечение соосных геометрических тел
- Способ вспомогательных эксцентрических сфер
- 📹 Видео
Метки
Видео:Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать
Пересечение конуса и сферы пошаговое построение
Пересечение конуса и сферы в данной статье выполняется методом вспомогательных секущих плоскостей. Ниже представлено задание на определение линии пересечения фигур.
Порядок построения на пересечение конуса и сферы:
Первоначально находятся точки в нижнем изображении, затем полученные точки переносятся в верхнее изображение.
1.) Чертятся фигуры согласно заданию.
2.) Строятся и подписываются вспомогательные секущие плоскости. Можно указать первую точку, она находится в верхней части соприкосновения фигур. Смотрите на рисунок снизу.
3.) Плоскость «а» пересекает две фигуры (обозначено синим цветом). Чертятся окружности (синим цветом показаны) на нижнем изображении, опущенные от крайних точек фигур. В месте пересечения ставятся точки.
4.) Плоскость «m» (имеет сиреневый цвет) пересекла данные фигуры. В нижнем изображении также чертятся окружности (сиреневый цвет) и в месте пересечения указываются точки.
5.) Плоскость «n». Повторяются операции выполняемых в пунктах 4 и 3.
6.) Указывают последнюю точку, расположенная в нижней части пересечения фигур
7.) Все найденные точки переносятся из нижнего изображения в верхнее. Для более понятного представления я не зря показал линии разными цветами.
8.) Соединяются точки плавной линией. Соединив, можно уже увидеть как выглядит линия пересечения.
9.) Завершающим шагом является удаление всех дополнительных линий с последующим обведением контуров фигур.
Не стоит забывать про видимые и невидимые линии чертежа и их применение.
Кода все сделано, можно взглянуть на полученный чертеж.
Видео:Метод эксцентрических сферСкачать
Взаимное пересечение поверхностей тел с примерами и образцами выполнения
Содержание:
Взаимное пересечение поверхностей. Поверхности могут взаимно пересекаться. При этом линии одной поверхности пересекаются с другой поверхностью и образуют точки, которые в совокупности представляют линию пересечения.
Видео:Пересечение конуса и сферы. Пошаговое видео. Инженерная графикаСкачать
Пересечение прямой линии с поверхностями тел
Конструкции деталей можно рассматривать как сочетание различных геометрических тел. Необходимо уметь строить линии пересечения поверхностей этих тел. Пример, где требуется подобное построение, показан на рис. 195, на котором изображен бункер, ограниченный цилиндрической поверхностью А, пересекающейся с конической поверхностью Б и поверхностью пирамиды В.
В зависимости от вида поверхностей тел линии пересечения могут быть лекальными кривыми или ломаными.
Для решения задач на построение линий пересечения поверхностей необходимо предварительно усвоить построение точек пересечения прямой с поверхностями различных геометрических тел.
Если прямая пересекается с поверхностью тела, получаются две точки, одновременно принадлежащие как поверхности тела, так и прямой линии. Такие точки называются точками входа и выхода (рис. 196. а; точки N и М). Для нахождения этих точек выполняются построения в следующем порядке.
Через данную прямую проводят вспомогательную плоскость (обычно проецирующую). Например, на рис. 196, а, где изображено пересечение прямой АВ с поверхностью пирамиды, через прямую проведена вспомогательная горизонтально-проецирующая плоскость Р. Затем находят линии пересечения вспомогательной плоскости с поверхностью данного геометрического тела (линии КС и ЕD). На пересечении полученных линий с заданной прямом находят искомые точки (точки N и М).
На комплексном чертеже точки входа и выхода определяют следующим образом (рис. 196. б). Горизонтальные проекции kс и ed прямых КС и ED совпадают с горизонтальным следом плоскости РH. Фронтальные проекции точек k‘, с’, е’ и d‘ определяют, пользуясь вертикальными линиями связи, проведенными из точек k, с, е и d до пересечения с фронтальными проекциями основания пирамиды. Соединяют точки k‘ с с’ и е’ с d‘ прямыми. На пересечении фронтальных проекций найденных прямых с проекцией а’Ь’ данной прямой получают фронтальные проекции n‘ и т’ искомых точек входа и выхода. Проведя через них вертикальные линии связи, находят горизонтальные проекции п и т этих точек.
В некоторых частных случаях можно обойтись без применения вспомогательной плоскости. Например, точки входа и выхода прямой АВ с поверхностью прямого кругового цилиндра (рис. 197, а) определяют следующим образом.
Горизонтальная проекция цилиндрической поверхности представляет собой окружность, поэтому горизонтальные проекции всех точек, расположенных на цилиндрической поверхности, в том числе и двух искомых точек, будут расположены на этой окружности (рис. 197, а).
Фронтальные проекции n‘ и m‘ искомых точек определяют, проводя через точки n и m вертикальные линии связи до встречи с данной фронтальной проекцией а’Ь’ прямой АВ.
На рис. 197, б, в показано построение точек входа и выхода прямой АВ и поверхности прямого кругового конуса. Через прямую АВ проводят вспомогательную плоскость Р, проходящую через вершину конуса. Плоскость Р пересечет конус по образующим SH3 SH4.
На комплексном чертеже изображение плоскости Р строят следующим образом. На прямой АВ берут произвольную точку К и соединяют ее с вершиной S конуса прямой линией. Две пересекающиеся прямые АВ и SK определяют плоскость Р.
Чтобы найти точки входа и выхода, необходимо построить горизонтальные проекции образующих SH3 и SH4. Для этого продолжим s’k’ и а’b‘ до пересечения с осью х в точках h‘2 и h‘1. Опустим линию связи из точки k‘ до пересечения с ab, полученную точку k соединим с s. Продлим горизонтальную проекцию прямой SK до пересечения с линией связи, опушенной из точки h‘2, получим точку h2. Из точки h‘1 проведем линию связи до пересечения с продолжением прямой ab, получим точку h1. Через следы h1 и h2 пройдет горизонтальный след плоскости Р. Точки h1 и h2 соединим прямой и получим горизонтальный след РН плоскости Р.
Основание конуса является горизонтальным следом конической поверхности. Поэтому, определив точки пересечения этого следа со следом РН плоскости Р, можно найти и те две образующие, по которым коническая поверхность пересекается вспомогательной плоскостью Р. На комплексном чертеже горизонтальная проекция основания конуса (окружность) пересекается со следом РН в точках h3 и h4. Эти точки соединяют с вершиной s и получают следы sh3 и sh4 образующих SH3 и SH4.
На пересечении найденных образующих с данной прямой АВ находят искомые точки М и N — точки входа и выхода прямой АВ с конической поверхностью.
Горизонтальные проекции точек т и n находят на пересечении горизонтальных проекций образующих sh3 и sh4 с горизонтальной проекцией прямой ab. Через точки m и n проводят вертикальные линии связи до пересечения а’b‘ и находят фронтальные проекции т‘ и n‘ точек входа и выхода.
Точки входа и выхода прямой АВ с поверхностью сферы (рис. 198) находят, проведя через прямую АВ вспомогательную фронтально-проецирующую плоскость Р.
Вспомогательная плоскость Р пересекает сферу по окружности, которая проецируется на плоскость Н в виде эллипса, что затрудняет построение. Поэтому в данном случае необходимо применить способ перемены плоскостей проекций. Новую плоскость проекций выбирают так, чтобы вспомогательная плоскость Р была бы ей параллельна, т.с. следует провести новую ось проекций x1 так. чтобы она была параллельна фронтальной проекции а’b‘ прямой АВ (для упрощения построении на рис. 198 ось x1 проведена через проекцию а’b‘).
Затем необходимо построить новую горизонтальную проекцию a1b1 прямой АВ и новую горизонтальную проекцию окружности диаметра D, по которой плоскость Р пересекает сферу. На пересечении новых горизонтальных проекций двух искомых точек m> и n> Обратным построением определяем фронтальные т’ и n‘ и горизонтальные т и п проекции точек входа и выхода.
Видео:Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать
Линии пересечения и перехода
Многие детали машин представляют собой конструкции из пересекающихся геометрических тел. Общая линия пересекающихся поверхностей называется линией пересечения.
На чертежах линии пересечения поверхностей изображаются сплошной основной линией (рис. 199, а). В местах перехода поверхностей литых и штампованных деталей нет четкой линии пересечения. Воображаемая линия пересечения называется линией перехода и условно изображается на чертежах сплошной тонкой линией. Эта линия начинается и заканчивается в точках пересечения продолжения контура взаимно пересекающихся поверхностей (рис. 199. б).
Встречаются детали, имеющие всевозможные линии пересечения и перехода поверхностей. Особенно много линий перехода у поверхностей деталей, изготовленных литьем.
На рис. 200, а на приборе для испытания твердости видны линии переходов различных поверхностей.
Кожух и крышка смесительного аппарата (рис. 200. б) имеют разнообразные линии перехода. Здесь можно видеть линии взаимного пересечения цилиндрических и других поверхностей.
Построение линий пересечения и перехода поверхностей при выполнении чертежей трубопроводов, вентиляционных устройств, резервуаров, кожухов машин, станков требует точности.
Видео:Линия пересечения поверхностей конуса и сферы (метод секущих плоскостей)Скачать
Общие правила построения линий пересечения поверхностей
Метод построения линий пересечения поверхностей тел заключается в проведении вспомогательных секущих плоскостей и нахождении отдельных точек линий пересечения данных поверхностей в этих плоскостях.
Построение линии пересечения поверхностей тел начинают с нахождения очевидных точек. Например, на рис. 201, где изображены линии пересечения призмы с конусом, такими точками являются точки А и В. Затем определяют характерные точки, расположенные, например, на очерковых образующих поверхностей вращения или крайних ребрах, отделяющих видимую часть линий перехода от невидимой. На рис. 201 это точки С и D. Они располагаются на крайних ребрах верхней горизонтальной грани призмы.
Все остальные точки линии пересечения называются промежуточными (например, точки Е и F). Обычно их определяют с помощью вспомогательных параллельных секущих плоскостей (рис. 201, а).
В качестве вспомогательных плоскостей выбирают такие плоскости, которые пересекают обе заданные поверхности по простым линиям — прямым или окружностям, причем окружности должны располагаться в плоскостях, параллельных плоскостям проекций.
В данном примере плоскость Р рассекает конус по окружности (рис. 201, в), с помощью которой находят горизонтальные проекции точек е и f.
Во всех случаях. перед тем как строить линию пересечения поверхностей на чертеже, необходимо представить себе эту линию в пространстве (рис. 201, б).
Видео:Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)Скачать
Пересечение поверхностей цилиндра и призмы
На рис. 202 показано построение проекции линий пересечения поверхности треугольной призмы с поверхностью прямого кругового цилиндра. Боковые грани призмы перпендикулярны плоскости V (рис. 202, а), поэтому фронтальная проекция линий пересечения поверхностей этих тел совпадает с фронтальной проекцией основания призмы. Горизонтальные проекции линий пересечения поверхностей совпадают с горизонтальной проекцией цилиндра и являются окружностью. Профильные проекции точек А и Е находим по горизонтальным и фронтальным проекциям с помощью линий связи. Для построения проекций промежуточных точек В, С, D используем вспомогательные секущие плоскости РV, РV1 и РV2, c помощью которых находим фронтальные проекции b‘, с’. d‘ точек B, С. D.
В данном примере можно обойтись без вспомогательных секущих плоскостей, намечая произвольно на фронтальной проекции точки b‘, с’, d‘.
Опуская линии связи на горизонтальную проекцию, находим горизонтальные проекции с, Ь, d точек С, В, D. На профильной проекции с помощью линий связи находим проекции Ь», с”, d«.
На рис. 202, б показано построение изометрической проекции. После построения изометрической проекции цилиндра, используя размеры т и п (рис. 202, а), строят изометрическую проекцию основания призмы, на котором находят точки 1, 2. 3. 4. 5. От этих точек откладывают расстояния 1«е». 2“d« и т.п., взятые с профильной проекции комплексного чертежа, и находят точки А, В. С, D. Е
На изометрической проекции линия пересечения поверхностей цилиндра и призмы получается соединением точек А, В. С, D, Е, которые строятся но координатам, взятым с комплексного чертежа.
Видео:Линия пересечения двух поверхностей конус и призма (Метод секущих плоскостей)Скачать
Пересечение цилиндрических поверхностей
При выполнении машиностроительных чертежей наиболее часто встречается случай пересечения двух цилиндрических поверхностей, оси которых расположены под углом 90 0 .
Разберем пример построения линии пересечения поверхностей двух прямых круговых цилиндров. оси которых перпендикулярны к плоскостям проекций (рис. 203, а).
В начале построения, как известно, находим проекции очевидных точек 1, 7 и 4.
Построение проекций промежуточных точек показано на рис. 203, б. Если в данном примере применить общий способ построения линий пересечения с помощью вспомогательных взаимно параллельных плоскостей, пересекающих обе цилиндрические поверхности по образующим, то на пересечении этих образующих будут найдены искомые промежуточные точки линии пересечения (например, точки 2, 3, 5 на рис. 203, а). Однако в данном случае выполнять такое построение нет необходимости по следующим соображениям.
Горизонтальная проекция искомой линии пересечения поверхностей совпадает с окружностью — горизонтальной проекцией большого цилиндра. Профильная проекция линии пересечения также совпадает с окружностью — профильной проекцией малого цилиндра. Таким образом, фронтальную проекцию искомой линии пересечения легко найти по общему правилу построения кривой линии по точкам, когда две проекции точек известны. Например, по горизонтальной проекции точки 3 (рис. 203, б) находят профильную проекцию 3″. Но двум проекциям 3 и 3″ определяют фронтальную проекцию 3′ точки 3. принадлежащей линии пересечения цилиндров.
Построение изометрической проекции пересекающихся цилиндров начинают с построения изометрической проекции вертикального цилиндра. Далее через точку а1 параллельно оси х проводят ось горизонтального цилиндра. Положение точки О1 определяется величиной h1, взятой с комплексного чертежа (рис. 203, б). Отрезок, равный h, откладываем от точки О вверх по оси z (рис. 203, в). Откладывая от точки О1 по оси горизонтального цилиндра отрезок l, получим точку О2 — центр основания горизонтального цилиндра.
Изометрическая проекция линии пересечения поверхностей строится по точкам с помощью трех координат. Однако в данном примере искомые точки можно построить иначе.
Так, например, точки 3 и 2 строят следующим образом. От центра О2 (рис. 203, в) вверх, параллельно оси z, откладывают отрезки т и п, взятые с комплексного чертежа. Через концы этих отрезков прямые, параллельные оси у, до пересечения с основанием горизонтального цилиндра в точках 31 и 21. Затем из точек 1. 3 проводят прямые, параллельные оси х, и на них откладывают отрезки, равные расстоянию от основания горизонтального цилиндра до линии пересечения, взятые с фронтальной или горизонтальной проекции комплексного чертежа. Конечные точки этих отрезков будут принадлежать линии пересечения. Через полученные точки проводят по лекалу кривую, выделяя се видимые и невидимые части.
Пример взаимного пересечения цилиндрических поверхностей с осями, перпендикулярными друг к другу, приведен на рис. 204, а. Одна цилиндрическая поверхность корпуса имеет вертикальную ось, а другая (половина цилиндра) — горизонтальную.
Если диаметры пересекающихся цилиндрических поверхностей одинаковы. то профильная проекция линии пересечения представляет собой две пересекающиеся прямые (рис. 204, б).
Если пересекающиеся цилиндрические поверхности имеют оси, расположенные под углом, отличным от прямого угла, то линию их пересечения строят с помощью вспомогательных секущих плоскостей или другими способами (например, способом сфер).
Видео:Пересечение конуса и полусферыСкачать
Пересечение поверхностей многогранников
При пересечении двух многогранников линия пересечения поверхностей представляет собой ломаную линию.
Если ребра двух призм взаимно перпендикулярны (рис. 205, а), то линия пересечения призм строится следующим образом.
Горизонтальная и профильная проекции линии пересечения совпадают соответственно с горизонтальной проекцией пятиугольника (основания одной призмы) и с профильной проекцией четырехугольника (основания другой призмы). Фронтальную проекцию ломаной линии пересечения строят по точкам пересечения ребер одной призмы с гранями другой.
Например, взяв горизонтальную 1 и профильную 1″ проекции точки 1 пересечения ребра пятиугольной призмы с гранью четырехугольной (рис. 205, а) и пользуясь известным приемом построения, с помощью линии связи можно легко найти фронтальную проекцию 1′ точки 1, принадлежащей линии пересечения призм.
Изометрическая проекция двух пересекающихся призм (рис. 205, б) может быть построена по координатам соответствующих точек.
Например, изометрическую проекцию двух точек 5 и 51, симметрично расположенных на левой грани пятиугольной призмы, строят так. Принимая для удобства построений за начало координат точку О, лежащую на верхнем основании пятиугольной призмы, откладываем влево от О по оси х отрезок ОЕ, величину которого берут с комплексного чертежа на фронтальной или горизонтальной проекции. Далее из точки Е вниз параллельно оси z откладываем отрезок EF, равный а, и, наконец, от точки F влево и вправо параллельно оси у откладываем отрезки F5 и F51, равные с/2.
Далее от точки F параллельно оси х откладываем отрезок n, взятый с комплексного чертежа. Через его конец проводим прямую, параллельную оси у, и откладываем на ней отрезок, равный с. Вниз параллельно оси z откладываем отрезок, равный Ь, и параллельно у — отрезок, равный k. В результате получаем изометрию основания четырехугольной призмы.
Точки 1 и 4 на ребрах пятиугольной призмы можно построить, используя только одну координату z.
Примеры, где требуются подобные построения, показаны на рис. 206, на которых видны линии пересечения поверхностей призм.
Линию пересечения поверхностей четырехугольной призмы с четырехугольной пирамидой (рис. 207, а) строят по точкам пересечения ребер одного многогранника с гранями другого многогранника.
Например, проекции точек 1 и 3 искомой линии пересечения находят следующим образом. Фронтальные проекции 1‘ и 3′ очевидны. Профильные проекции 1“ и 3“ и горизонтальные 1 и 3 находят с помощью линий связи. Аналогично находят точки 2 и 4.
Линию пересечения поверхностей четырехугольной призмы с четырехугольной пирамидой (рис. 207, а) строят по точкам пересечения ребер одного многогранника с гранями другого многогранника.
Например, проекции точек 1 и 3 искомой линии пересечения находят следующим образом. Фронтальные проекции 1‘ и 3′ очевидны. Профильные проекции 1“ и 3“ и горизонтальные 1 и 3 находят с помощью линий связи. Аналогично находят точки 2 и 4.
На рис. 207, б и в показана последовательность построения диметрической проекции. Сначала строят пирамиду. Для построения призмы от точки О откладывают отрезок ОО1, взятый с фронтальной проекции комплексного чертежа (О’ О’1 ). и получают точку О1 (рис. 207, б). Через точку О1 проводят параллельно оси х ось симметрии призмы и по ней от точки откладывают вправо и влево половины высоты призмы. Через точки О2 и О3 проводят прямые, параллельные осям у и z, на которых откладывают соответственно половину и целую длину диагоналей четырехугольника основания призмы. Соединив концы диагоналей прямыми, получают диметрическую проекцию основания призмы.
Диметрические проекции точек пересечения 2. 4, б. 8 ребер призмы и пирамиды получаются без дополнительных построений (рис. 207, в).
Диметрические проекции точек пересечения 1, 3, 5. 7 ребер пирамиды с гранями призмы находят по координатам известным способом.
В этом примере диметрические проекции точек 1, 3, 5 и 7 можно построить иначе. От середины левого основания призмы — точки О2 — откладываем вверх и вниз по оси z соответственно отрезки т и n, взятые с комплексного чертежа. Через концы отрезков т и n проводят прямые, параллельные оси у, до пересечения с контуром основания призмы в точках А, В, С и D. Через эти точки проводят прямые, параллельные оси х, до пересечения с ребрами пирамиды. В результате получают искомые точки 1, 3, 5 и 7.
На рис. 208 показан корпус оптического компаратора, который имеет элементы пересечения поверхностей пирамид и призм. На рисунке видна линия пересечения поверхностей этих тел.
Видео:ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ КОНУСА. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯСкачать
Пересечение поверхностей цилиндра и конуса
Пример пересечения поверхностей цилиндра и конуса показан на рис. 209, б. Построение линии пересечения поверхностей прямого кругового усеченного конуса, имеющего вертикальную ось, с цилиндром, расположенным горизонтально, показано на рис. 209, а. Оси цилиндра и конуса пересекаются в точке О1 и лежат в одной плоскости.
Как и ранее, сначала определяют проекции очевидных 1, 7 и характерных 4, 10 точек линии пересечения.
Для определения промежуточных точек проводят вспомогательные горизонтальные секущие плоскости Р1…Р5. (рис. 209, а). Они будут рассекать конус по окружности, а цилиндр по образующим (рис. 209, б). Искомые точки линии пересечения находятся на пересечении образующих с окружностями.
Для определения горизонтальных проекций точек пересечения из центра O1 проводят горизонтальные проекции дуг окружностей (рис. 209, а), по которым вспомогательные плоскости Р1…Р5 пересекают конус. Размеры радиусов этих дуг окружностей взяты с профильной проекции.
Так как профильные проекции точек 1“… 12“ известны, то, проводя линии связи до пересечения с соответствующими дугами окружностей, находят горизонтальные проекции точек 1… 12. Используя линии связи, по двум имеющимся проекциям, профильной и горизонтальней, находим фронтальные проекции точек пересечения 1‘. 12’.
Полученные на фронтальной и горизонтальной проекциях точки, принадлежащие к линии пересечения. обводят по лекалу.
На горизонтальной проекции часть линии пересечения будет видимой, а часть — невидимой. Границу этих частей линии пересечения определяют с помощью вспомогательной секущей плоскости Р3, проведенной через ось цилиндра. Точки, расположенные над плоскостью Р3 (см. профильную проекцию), будут на плоскости Н видимы, а точки, расположенные под плоскостью Р3,— невидимы.
Изометрическую проекцию пересекающихся поверхностей цилиндра и конуса вычерчивают в такой последовательности. Вначале выполняют изометрическую проекцию конуса (рис. 209, в). Затем от центра О нижнего основания конуса по его оси вверх откладывают координату ОО1 = h и получают точку О1, через которую проводят ось цилиндра параллельно изометрической оси х. От точки О1 по этой оси откладывают координату х = О1О2 точки О2 — центра окружности основания цилиндра.
Для построения линии пересечения находят изометрические проекции точек этой линии с помощью их координат, взятых с комплексного чертежа. За начало координат принимается точка О2 (центр основания цилиндра). Параллельно оси у проводят до пересечения с овалом следы плоскостей сечения с координатами по оси z, взятых с профильной проекции. Из полученных точек А, В, С. параллельно оси х проводят прямые — образующие цилиндра, на них откладывают координаты Al, В2, . взятые с фронтальной проекции комплексного чертежа, и получают точки 2. 12, принадлежащие искомой линии пересечения.
Через найденные точки проводят кривую линию по лекалу.
На рис. 210 показана деталь. Линию пересечения конической поверхности с цилиндрической строят описанным выше способом.
Построение линии пересечения поверхностей цилиндра и конуса, оси которых параллельны (рис. 211), аналогично построению, рассмотренному на рис. 209.
Выбирают вспомогательные горизонтальные плоскости, например Р1, Р2 и Р3, которые пересекают конус и цилиндр по окружностям (рис. 211, б). Диаметр окружностей, образованных в результате пересечения этих плоскостей с цилиндрам, одинаков и равен D; диаметры окружностей, полученных в результате пересечения плоскостей с конусом, — различные. Взаимное пересечение горизонтальных проекций этих окружностей дают искомые горизонтальные проекции точек 1. 9 линии пересечения (рис. 211, а). Фронтальные проекции 1′. 9′ этих точек находят с помощью линий связи на фронтальных следах РV1, РV2, РV3 вспомогательных плоскостей. Профильные проекции точек строят по двум их известным проекциям.
Характерными точками в данном примере являются: высшая точка линии пересечения — точка 5, нахождение проекций которой начинают с имеющейся горизонтальной проекции, и точки 1, 9
Точки 1 и 9 получились от пересечения оснований цилиндра и конуса.
Построение изометрической проекции пересекающихся конуса и цилиндра (рис. 211, в) выполняется по этапам, подробно описанным в предыдущем примере (см. рис. 209, в). Построение начинается проведением изометрических осей конуса и цилиндра, затем их оснований (эллипсов) с центрами на расстоянии друг от друга, определяемом координатой n3. Для построения линий пересечения находят изометрические проекции точек этой линии с помощью координат, взятых с чертежа.
На рис. 212 показана деталь, имеющая форму двух цилиндров, пересекающихся с конусом. Оси цилиндра и конуса параллельны.
Примеры пересечения поверхностей даны на рис. 213. Линии пересечения показаны красным цветом.
Видео:Построение точек встречи прямой с поверхностью конусаСкачать
Пересечение поверхностей сферы и цилиндра
Прямой круговой цилиндр, расположенный перпендикулярно плоскости Н, пересекается с шаром, центр которого расположен на оси цилиндра, по окружности, которая изображается на фронтальной проекции отрезком прямой (рис 214). Проводя через точки А и В пересечения контурных образующих цилиндра и очерка шара вспомогательную горизонтальную плоскость Р, заметим следующее. Плоскость Р пересечет как цилиндр, так и шар по окружности одинакового диаметра, которая расположена в проецирующей плоскости. Следовательно, се фронтальная проекция будет изображаться в виде прямой а’b’.
При пересечении поверхности конуса или поверхности вращения с шаром, центр которого расположен на оси этих поверхностей, также получается окружность (рис. 214, а).
Если центр шара расположен вне оси цилиндра (рис. 214, б), то для построения линии пересечения применяют вспомогательные горизонтальные плоскости. Например, вспомогательная горизонтальная плоскость Р пересекает цилиндр по окружности радиуса r, а шар — по окружности радиуса R. Точки пересечения а и b горизонтальных проекций этих окружностей принадлежат горизонтальной проекции линии пересечения. Фронтальные проекции а’ и b‘ строят, используя линии связи.
Одной из характерных точек данной линии пересечения является верхняя точка D. Горизонтальная проекция этой точки находится на пересечении прямой, соединяющей центры окружностей радиусов r и R с горизонтальной проекцией основания цилиндрической поверхности. Для построения фронтальной проекции точки D через точку d проводят дугу радиуса r1, строят фронтальную проекцию дуги (отрезок прямой, параллельной оси х) и с помощью линии связи находят точку d’.
Видео:Пересечение поверхностей. Построение линии пересечения.Скачать
Пересечение поверхностей тора и цилиндра
Патрубок, форма которого образована пересекающимися поверхностями тора и цилиндра, показан на рис. 215. Выполнен комплексный чертеж с построением линии пересечения поверхностей и тора, и цилиндра. В этом примере очевидные точки 1 и 5. Для определения проекций промежуточных точек используют вспомогательные плоскости РН и PН1, параллельные фронтальной плоскости проекции. Например, плоскость РН пересекает поверхность тора по окружности радиуса R, а поверхность цилиндра — по двум образующим Взаимное пересечение этих образующих с дугою окружности радиуса R дает на фронтальной проекции две точки 2′ и 4′, принадлежащие искомой линии пересечения.
Видео:2 3 проекция точки на конусеСкачать
Построение линий пересечения поверхностей способом вспомогательных сфер
Для построения линии пересечения поверхностей вместо вспомогательных секущих плоскостей при определенных условиях удобно применять вспомогательные сферические поверхности.
В отличие от метода вспомогательных секущих плоскостей метод вспомогательных сфер имеет преимущество, так как при построении фронтальной проекции линии пересечения поверхностей не используются две другие проекции пересекающихся поверхностей (рис. 216).
Вспомогательные сферические поверхности для построения линий пересечения поверхностей тел можно применять лишь при следующих условиях:
а) пересекающиеся поверхности должны быть поверхностями вращения;
б) оси поверхностей вращения должны пересекаться; точка пересечения осей является центром вспомогательных сфер;
в) оси поверхностей вращения должны быть параллельны какой-либо плоскости проекций.
Примеры применения вспомогательных сферических поверхностей показаны на рис. 216, а и б.
На рис. 216, а дано построение фронтальных проекций линии пересечения поверхностей двух цилиндров, оси которых пересекаются под острым углом.
Вспомогательные сферические поверхности проводят из точки О’ пересечения осей цилиндров.
Построим, например, фронтальную проекцию некоторой промежуточной точки линии пересечения. Для этого из точки О’ проводят сферическую поверхность радиуса R, которая на данной проекции изобразится в виде окружности этого же радиуса. Окружность радиуса R пересечет горизонтальный цилиндр по окружностям диаметра АС и ВD, а наклонно расположенный цилиндр — по окружностям диаметра АВ.
В пересечении полученных проекций окружностей — отрезков а’b’ и c‘d‘— находят проекцию 2′ промежуточной точки линии пересечения.
Вводя еще целый ряд вспомогательных сферических поверхностей, можно построить необходимое число точек линии пересечения.
Пределы радиусов сферических поверхностей находят следующим образом (рис. 216, а и б): наибольшая окружность сферической поверхности должна пересекаться с контурными образующими 1—1 и II— II цилиндра и наименьшая должна быть касательной к одной из данных пересекающихся поверхностей и пересекаться с образующими другой поверхности.
Если поверхности двух конусов (рис. 217, а) описаны около шара, то они касаются шара по двум окружностям; эти окружности пересекаются в двух точках, которые проецируются на фронтальную плоскость проекций в точку р’. Плоскости, в которых лежат эти окружности, пересекаются по прямой, соединяющей точки пересечения линий касания конусов с шаром. Окружности проецируются на фронтальную плоскость проекций в виде прямых линий.
Соединив очевидную точку s’ пересечения конусов с точкой р‘, получим линию пересечения конусов с шаром, которая представляет собой фронтальную проекцию эллипса.
Разберем второй подобный пример. Если два прямых круговых цилиндра с осями, пересекающимися в точке О’ (рис. 217, б), описаны около шара с центром в точке О, то фронтальная проекция шара будет окружностью, касательной к контурным образующим цилиндров. Линии пересечения поверхностей этих цилиндров представляют собой эллипсы, фронтальные проекции которых изображаются в виде прямых линий а’b‘ и c’d’.
Примеры и образцы решения задач:
Услуги по выполнению чертежей:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Задание 50. Построение ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ЦИЛИНДРОВСкачать
Пересечение поверхностей и способы построения линий пресечения
Видео:Часть 2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ. Блок 10. Конус. Урок 3. Сечение плоскостью под углом к основанию.Скачать
Пересечение поверхностей и способы построения линий пресечения
Линия пересечения принадлежит обеим пересекающимся поверхностям и образуется множеством их общих точек. Следовательно, построение линии пересечения поверхностей сводится к построению этих общих точек.
При пересечении поверхностей вращения порядок линии пересечения определяется умножением порядков пересекающихся поверхностей. Например, если пересекаются круговой конус (поверхность 2-го порядка) и сфера (поверхность 2-го порядка), то линия пересечения является кривой 4-го порядка.
Определение способа построения линии пересечения зависит от взаимного расположения пересекающихся поверхностей, а также от их расположения относительно плоскостей проекций.
Из всех возможных
вариантов пересечения поверхностей геометрических тел в зависимости от их взаимного расположения можно выделить четыре случая, которые позволяют определить и представить форму линии пересечения поверхностей:
I случай. Частичное врезание (рис. 8.1). В этом случае линией пересечения является одна замкнутая пространственная линия.
II случай. Полное проницание (рис. 8.2). В этом случае линией пересечения являются две замкнутые пространственные линии.
III случай. Одностороннее соприкосновение (рис. 8.3). В этом случае поверхности соприкасаются в одной общей точке и линия их пересечения, проходя через эту точку, распадается на две замкнутые пространственные линии (поверхности имеют одну общую касательную плоскость).
IV случай. Двойное соприкосновение (рис. 8.4).
В этом случае поверхности имеют две точки соприкосновения и и линия их пересечения распадается на две плоские кривые в соответствии с теоремой 2 (С. А. Фролов «начертательная геометрия»):
«Если две поверхности вращения второго порядка имеют касание в двух точках, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую /77, соединяющую точки касания» (поверхности имеют две общие касательные плоскости).
В зависимости от расположения пересекающихся геометрических тел относительно плоскостей проекции и участия в пересечении геометрических тел, имеющих проецирующую поверхность (как призма или цилиндр) или не имеющих проецирующей поверхности (пирамида, конус, шар, тор, тороид, наклонная призма или наклонный цилиндр, глобоид и др.), следует выбрать оптимальный способ построения проекций линии пересечения поверхностей на чертеже.
По этим признакам способы построения линий пересечения поверхностей можно объединить в две группы:
Первая группа: частные случаи пересечения поверхностей, когда для построения линий пересечения не требуется применения специальных способов, а используется частное положение пересекающихся геометрических тел относительно плоскостей проекций.
Вторая группа: общие случаи пересечения поверхностей, когда для построения линий пересечения требуется применить специальные способы посредников.
Частные случаи пересечения поверхностей
К первой группе частных случаев пересечения поверхностей относятся следующих четыре случая:
1 случай: пересечение геометрических тел, боковые поверхности которых являются проецирующими, то есть, перпендикулярны какой-либо плоскости проекций.
2 случай: пересечение геометрических тел, у одного из которых боковая поверхность является проецирующей.
3 случай: пересечение соосных поверхностей вращения, т. е. имеющих общую ось вращения,
4 случай: пересечение поверхностей вращения второго порядка, описанных вокруг сферы (по теореме Г. Монжа).
Рассмотрим на примерах построение проекций линий пересечения поверхностей геометрических тел в четырех частных случаях первой группы.
Следует отметить, что перечисленные частные случаи пересечения поверхностей наиболее часто встречаются при формообразовании различных реальных деталей.
1-й частный случай. На рис. 8.5 показан пример построения проекций линии пересечения поверхностей горизонтально-проецирующего цилиндра и фронтально-проецирующей прямой правильной треугольной призмы, то есть пересекаются два геометрических тела, боковые поверхности которых занимают относительно плоскостей проекций проецирующее положение.
Характерный признак 1-го частного случая: на заданных проекциях тел определяются две проекции искомой линии пересечения:
-фронтальная проекция линии пересечения совпадает с вырожденной в ломаную линию боковой поверхностью призмы;
-горизонтальная проекция линии пересечения совпадает с участком окружности, которая является вырожденной проекцией боковой поверхности цилиндра.
Следовательно, требуется достроить только профильную проекцию линии пересечения, построив профильные проекции обозначенных точек по их принадлежности одному из тел (в данной задаче — цилиндру), и соединить их плавной кривой с учетом ее видимости на поверхностях. 2-й частный случай.
На рис. 8.6 показан пример построения проекций линии пересечения поверхностей прямого кругового конуса и фронтально-проецирующего цилиндра, то есть пересекающихся геометрических тел, у одного из которых боковая поверхность проецирующая.
Характерный признак 2-го частного случая: на заданных проекциях тел определяется одна проекция линии пересечения:
- фронтальная проекция линии пересечения совпадает с окружностью, которая является вырожденной проекцией боковой поверхности цилиндра.
Следовательно, требуется достроить горизонтальную и профильную проекции линии пересечения, построив горизонтальные и профильные проекции обозначенных точек по их принадлежности конусу, и соединить построенные на проекциях точки плавными кривыми линиями с учетом их видимости на поверхностях.
. На профильную проекцию предмета пространственная кривая линия пересечения 4-го порядка проецируется в виде участка гиперболы.
3-й частный случай.
Пересечение соосных геометрических тел
Соосными называются геометрические тела вращения, имеющие общую ось вращения «». Поверхности соосных тел пересекаются по окружностям, перпендикулярным их общей оси. Если общая ось «» соосных геометрических тел является прямой проецирующей (т. е. она перпендикулярна какой-либо одной плоскости проекций, а двум другим параллельна), то окружность пересечения проецируется дважды в прямую линию, перпендикулярную их общей оси, на те плоскости проекций, которым эта общая ось параллельна.
На рис. 8.7 показан пример построения линии пересечения соосных геометрических тел — конуса и горизонтально-проецирующего цилиндра, имеющих общую горизонтально-проецирующую ось (ось перпендикулярна и параллельна и ). Линией пересечения является окружность, фронтальная и профильная проекции которой представляют собой прямые линии, перпендикулярные их общей оси и проходящие через точки пересечения фронтальных и профильных очерков поверхностей. Горизонтальная проекция этой окружности пересечения совпадает с вырожденной горизонтальной проекцией боковой поверхности цилиндра.
На рис. 8.8 показан пример цилиндр построения линий пересечения двух пар соосных поверхностей:
- поверхности шара и горизонтально-проецирующего цилиндра, соосных относительно горизонтапьно-проецирую-щей оси , окружности пересечения которых проецируются в прямые линии на фронтальную и профильную проекции;
- поверхности шара и сквозного профильно-проецирующего цилиндрического отверстия в шаре, соосных относительно профильно-проецирующей оси , окружности пересечения которых проецируются в прямые линии на фронтальную и горизонтальную проекции.
4-й частный случай.
Пересечение поверхностей вращения второго порядка, описанных вокруг сферы (по теореме Г. Монжа).
Напоминаем, к поверхностям вращения второго порядка относятся круговые цилиндр и конус, шар, эллипсоиды, параболоид и одно-, двуполостные гиперболоиды.
Эллиптические цилиндры и конусы, а также наклонный круговой конус — это не поверхности вращения!
Все торы (открытый, закрытый и самопересекающийся), глобоиды и тороиды относятся к поверхностям вращения четвертого порядка!
В 4-м частном случае имеет место двойное соприкосновение пересекающихся поверхностей вращения второго порядка, описанных вокруг сферы, и построение линии пересечения основано на теореме 2 (С. А. Фролов «Начертательная геометрия» [23]):
Теорема 3, известная как теорема Г. Монжа, вытекает из теоремы 2: «Если две поверхности вращения второго порядка описаны вокруг третьей поверхности второго порядка или вписаны в нее, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания».
Практическое применение теоремы возможно в том случае, когда две поверхности вращения второго порядка описаны вокруг сферы или вписаны в нее.
Использовать теорему Г. Монжа для построения на чертеже линии пересечения поверхностей можно при наличии в задаче четырех обязательных графических условий:
- Пересекаются поверхности вращения второго порядка.
- Оси поверхностей вращения должны пересекаться (точка пересечения — центр вписанной сферы).
- Поверхности описаны вокруг общей сферы или вписаны в нее.
- Общая плоскость симметрии, проходящая через оси поверхностей, является плоскостью уровня.
При соблюдении этих четырех условий на одной из заданных проекций можно построить проекции двух плоских кривых, на которые распадается искомая линия пересечения:
- плоские кривые проецируются в отрезки прямых линий на ту проекцию предмета, которая расположена на плоскости проекций, параллельной общей плоскости симметрии поверхностей;
-точки пересечения очерков поверхностей на этой проекции принадлежат искомой линии пересечения и через эти точки проходят прямые, в которые проецируются плоские кривые пресечения;
- прямые, как проекции плоских кривых, пересекаются в точке, с которой совпадают проекции двух точек соприкосновения поверхностей и соответственно проекция прямой , соединяющей эти точки соприкосновения (точки касания).
. Точки касания (соприкосновения) поверхностей и определяются на пересечении проекций окружностей касания вписанной сферы с каждой из поверхностей.
На рис. 8.9 показан пример построения проекций линии пересечения поверхностей вращения второго порядка — прямого кругового конуса и наклонного кругового цилиндра, описанных вокруг общей сферы. Для решения задачи использована теорема Г. Монжа, поскольку здесь соблюдены все четыре обязательных условия ее применения:
- Пересекаются прямой круговой конус и круговой наклонный цилиндр, т. е. поверхности вращения второго порядка.
- Оси конуса и цилиндра пересекаются в точке .
- Обе поверхности описаны вокруг общей для них сферы с центром точке .
- Общая плоскость симметрии поверхностей а(ан) является фронтальной плоскостью уровня .
Построение проекций линии пересечения поверхностей по теореме Г. Монжа выполняется по следующему графическому алгоритму:
1-е действие. Определить проекцию предмета, на которую плоские кривые проецируются в отрезки прямых линий: в данной задаче это фронтальная проекция, так как общая плоскость симметрии параллельна фронтальной плоскости проекций .
2-е действие. Построить фронтальные совпадающие проекции точек соприкосновения заданных поверхностей, лежащих на пересечении проекций окружностей касания вписанной сферы с каждой из поверхностей (прямые линии — проекций этих окружностей касания — строятся как линии пересечения соосных поверхностей, так как вписанная сфера образует две пары соосных поверхностей — конус/сфера с общей осью и цилиндр/сфера с общей осью . На чертеже проекции этих окружностей касания проходят через точки, полученные на пересечении перпендикуляров, проведенных из точки — центра вписанной сферы — к образующим конуса (окружность касания 1) и цилиндра (окружность касания 2).
3-е действие. Отметить на фронтальной проекции точки и пересечения очерков поверхностей и построить фронтальные проекции плоских кривых пересечения 2-го порядка, соединив прямыми линиями и противоположные точки пересечения очерков (обе прямые обязательно должны пройти через построенные проекции точек соприкосновения поверхностей ;
4-е действие. Построить горизонтальные проекции двух плоских кривых пересечения — эллипсов, по горизонтальным проекциях обозначенных точек и построенных по принадлежности поверхности конуса; обозначить и построить точки и , которые лежат на очерковых образующих горизонтальной проекции цилиндра и определяют границу видимости кривых на горизонтальной проекции предмета, а также отметить и построить необходимое количество промежуточных точек (здесь не обозначены).
5-е действие. Оформить фронтальный и горизонтальный очерки пресекающихся поверхностей.
. Построение точек соприкосновения поверхностей особенно важно в задачах, где по условию нельзя определить одну из четырех точек пересечения очерков поверхностей. Совпадающие проекции точек соприкосновения в этом случае определят направление одной из двух прямых линий — проекций плоских кривых пересечения (рис. 8.10). В данном случае проекция плоской кривой линии пересечения проведена через точки и . Точка определяется на основании конуса.
На рис. 8.11 показаны примеры построения линий пересечения поверхностей второго порядка, описанных вокруг сферы, с применением теоремы Г. Монжа. Они часто встречаются при конструировании различных переходов цилиндрических и конических труб, или пересечений отверстий в деталях.
Общие случаи пересечения поверхностей и способы построения линий пересечения поверхностей
Ко второй рассматриваемой группе относятся общие случаи пересечения геометрических тел, боковые поверхности которых могут занимать относительно плоскостей проекций непроецирующее положение (это наклонные призмы и цилиндры), а также геометрические тела, поверхности которых непроецирующие — это конус, сфера, торы, глобоид, эллипсоид, параболоид и гиперболоиды. Сюда же относятся наклонный эллиптический цилиндр, имеющий круговые сечения, и наклонный круговой конус.
предмета, на которой следует начинать решение задачи, и границы введения посредников.
Для построения проекций точек, принадлежащих линии пересечения поверхностей, способом посредников следует применять общий для всех рассматриваемых способов графический алгоритм.
Графический алгоритм I:
1-е действие. Ввести вспомогательную плоскость или поверхность-посредник.
2-е действие. Построить вспомогательные линии пересечения плоскости — или поверхности-посредника с каждой из заданных поверхностей.
3-е действие. Определить точки пересечения построенных вспомогательных линий пересечения — эти точки принадлежат искомой линии пересечения.
Рассмотрим на примерах применение различных способов вспомогательных посредников для построения проекций линий пересечения поверхностей.
Способ вспомогательных секущих плоскостей уровня
Применение способа вспомогательных секущих плоскостей рационально при наличии д в у х графических условий:
- Общая плоскость симметрии пересекающихся геометрических тел является плоскостью уровня; при соблюдении этого условия точки пересечения
очерков поверхностей принадлежат искомой линии пересечения и определяют верхнюю и нижнюю границу введения плоскостей-посредников на соответствующей проекции предмета.
- Сечениями геометрических тел в одной из плоскостей уровня должны быть простые в построении линии пересечения — прямые линии (образующие) или окружности; эту плоскость уровня и следует выбрать в качестве посредника.
На рис. 8.12 показан пример построения проекций линии пересечения прямого конуса и половины шара.
Для решения задачи требуется предварительно выполнить графический анализ заданных проекций предмета:
А. Выбираем для решения задачи способ вспомогательных секущих плоскостей, так как здесь соблюдены два Рис. 8.12 графических условия его применения:
- общая плоскость симметрии геометрических тел — конуса и полушара — является фронтальной плоскостью уровня (первое условие применения);
- горизонтальные плоскости уровня, которые пересекают поверхности конуса и полушара по окружностям, выбираем в качестве вспомогательных плоскостей-посредников (второе условие применения).
Б. Решение задачи, то есть введение плоскостей-посредников, начинаем на фронтальной проекции предмета, так как общая плоскость симметрии геометрических тел является фронтальной плоскостью уровня.
В. Определяем границы введения плоскостей-посредников — это точка пересечения фронтальных очерков и точки пересечения окружностей оснований конуса и полушара, лежащие в горизонтальной плоскости уровня .
Построить проекции точек искомой линии пересечения, выполнив действия предложенного графического алгоритма I:
1-е действие. Ввести на фронтальной проекции предмета первую вспомогательную секущую горизонтальную плоскость-посредник произвольно и ниже точки .
2-е действие. Построить на горизонтальной проекции предмета вспомогательные окружности радиусами и , по которым секущая плоскость-посредник пересекает поверхности конуса и шара.
3-е действие. Определить на пересечении построенных вспомогательных окружностей горизонтальные проекции точек , принадлежащих линии пересечения; фронтальные совпадающие проекции этих точек определяются по линии связи на фронтальной проекции плоскости-посредника .
3.1. Повторить действия основного графического алгоритма, введя вторую плоскость-посредник , и построить проекции точек и т. д.
4-е действие. Соединить проекции построенных точек на фронтальной и горизонтальной проекциях предмета плавными кривыми линиями с учетом их видимости на проекциях: на фронтальную проекцию предмета пространственная кривая пересечения проецируется в видимую плоскую кривую второго порядка (участок параболы), поскольку горизонтальная проекция предмета имеет фронтальную симметрию; на горизонтальную проекцию предмета — в участок видимой кривой 4-го порядка сложной формы.
5-е действие. Оформить очерки поверхностей на заданных проекциях предмета с учетом их относительной видимости:
- на фронтальной проекции — очерк конуса существует влево от точки , а очерк шара вправо от точки (несуществующие очерки конуса и шара оставить тонкими линиями);
- на горизонтальной проекции — окружность основания конуса существует влево от точек , а окружность основания шара существует
вправо от точек (несуществующие части окружностей оснований конуса и шара оставить тонкими линиями).
. Способ вспомогательных секущих плоскостей позволяет строить одновременно две проекции искомой линии пересечения.
Способ вспомогательных концентрических сфер
Основанием для применения сферы в качестве вспомогательной поверх-ности-посредника являются две ее характерные особенности:
- в сфере можно провести через ее центр бесконечное количество осей;
- сфера может быть соосна любой поверхности вращения; соосные поверхности пересекаются по окружностям, проекции которых легко построить (см. рис. 8.7 и 8.8).
Сфера-посредник образует две пары соосных поверхностей с каждой из заданных поверхностей. Каждая образованная пара соосных поверхностей пересекается по соответствующим окружностям, которые проецируются в прямые, перпендикулярные общей оси каждой пары, и проходят через точки пересечения очерков каждой пары соосных поверхностей.
Применение способа вспомогательных концентрических сфер для построения линии пересечения поверхностей возможно при наличии трех следующих графических условий:
- Пересекаются поверхности вращения (кроме открытого и закрытого тора).
- Общая плоскость симметрии пересекающихся поверхностей является плоскостью уровня; при этом условии точки пересечения очерков на проекции предмета, изображенного на параллельной общей плоскости симметрии плоскости проекций, принадлежат искомой линии пересечения.
- Оси поверхностей пересекаются; точка пересечения осей является центром всех вспомогательных сфер.
На рис. 8.13 показан пример построения проекций линии пересечения усеченного конуса и тороида (самопересекающийся тор).
Рассмотренный способ вспомогательных секущих плоскостей здесь применять не следует, так как ни одна плоскость уровня не пересекает поверхности одновременно по окружностям (одно из условия применения).
Для решения задачи требуется предварительно выполнить графический анализ заданных проекций предмета.
А. Выбираем для решения задачи способ вспомогательных концентрических сфер, так как здесь соблюдены три графических условия его применения:
- пересекаются поверхности вращения — прямой круговой конус и тороид (самопересекающийся тор);
- общая плоскость симметрии геометрических тел является фронтальной плоскостью уровня;
- оси поверхностей пересекаются в точке — центр всех вспомогательных сфер.
Б. Решение задачи, то есть введение вспомогательных сфер-посредников начинаем на фронтальной проекции предмета, так как общая плоскость симметрии является фронтальной плоскостью уровня и точки и пересечения фронтальных очерков принадлежат линии пересечения.
В. Определяем границы введения сфер — это точки и пересечения фронтальных очерков пересекающихся геометрических тел.
Построить проекции точек линии пересечения, выполнив действия предложенного графического алгоритма I.
1-е действие. Ввести на фронтальной проекции вспомогательную сферу-посредник минимального радиуса , с центром в точке , вписанную в тороид (минимальная сфера-посредник должна вписываться в одну из поверхностей, а с другой поверхностью — пересекаться).
2-е действие. Построить проекции вспомогательных окружностей пересечения двух пар соосных поверхностей, образованных сферой-посред-ником с каждой заданной поверхностью:
- первая пара соосных поверхностей — сфера-посредник и тороид -имеют горизонтальную общую ось и пересекаются по окружности касания , которая проецируется в прямую линию (совпадает с осью конуса);
- вторая пара соосных поверхностей — сфера-посредник и конус имеют вертикальную общую ось вращения и пересекаются по двум вспомогательным окружностям , которые проецируются в прямые линии;
3-е действие. Определить точки пересечения построенных проекций вспомогательных окружностей и , которые принадлежат искомым линиям пересечения (по две пары совпадающих точек).
. Здесь имеет место случай полного проницания (II случай), и линия пересечения распадается на две замкнутые кривые.
Дополнительные действия:
4-е действие. Повторить действия основного графического алгоритма, введя вспомогательные сферы большего радиуса и с тем же центром в точке , и построить следующие пары точек и .
4.1. Достроить горизонтальные проекции построенных точек линии пересечения по принадлежности параллелям конуса.
4.2. Соединить проекции построенных точек на фронтальной и горизонтальной проекциях предмета плавными кривыми линиями с учетом их видимости на проекциях (только линия пересечения будет невидимой на горизонтальной проекции предмета).
5-е действие. Оформить очерки поверхностей на заданных проекциях предмета с учетом их относительной видимости.
Способ вспомогательных эксцентрических сфер
Наименование способа говорит о том, что вспомогательные сферы имеют разные центры, которые и нужно определять в процессе построения проекций линии пересечения поверхностей.
Способ вспомогательных эксцентрических сфер для построения линии пересечения поверхностей возможно применять при наличии трех следующих графических условий:
- Пресекаются:
- поверхности вращения 4-го порядка, т. е. торовые поверхности — открытый или закрытый тор;
- поверхности эллиптических цилиндра и конуса, имеющие круговые сечения.
- Общая плоскость симметрии поверхностей является плоскостью уровня.
- Оси поверхностей пересекаются или скрещиваются.
Поскольку в этом способе центр каждой вспомогательной сферы нужно определять графическими построениями, первое действие графического алгоритма для построения проекций точек линии пересечения дополняется построением центра каждой вспомогательной сферы.
Порядок графических действий для построения линий пересечения способом вспомогательных эксцентрических сфер показан на двух примерах.
На рис. 8.14 показан пример построения проекции линии пересечения профильно-проецирующего цилиндра с поверхностью четвертой части открытого тора. Задача решается способом вспомогательных эксцентрических сфер, так как здесь соблюдены три необходимых условия для применения этого способа:
- одна из пересекающихся поверхностей — открытый тор, имеющий круговые сечения во фронтально-проецирующих плоскостях, проходящих через его ось вращения
- общая плоскость симметрии поверхностей — фронтальная плоскость уровня (подразумевается), поэтому точка пересечения фронтальных очерков принадлежит искомой линии пересечения;
- оси поверхностей и скрещиваются.
Построение проекций точек линии пересечения поверхностей выполняется на заданной фронтальной проекции предмета по предлагаемому графическому алгоритму II.
Графический алгоритм II.
1-е действие. Ввести вспомогательную сферу, выполнив предварительно следующие графические действия.
1.1. Задать произвольное круговое сечение поверхности тора фронтально-проецирующей плоскостью , проходящей через его ось ; окружность (ее проекция — прямая линия ) — это заданная линия пересечения тора с искомой вспомогательной сферой, центр которой должен лежать на перпендикуляре к проекции этой окружности — прямой (хорда окружности, в которую проецируется вспомогательная сфера).
1.2. Провести к прямой через ее середину перпендикуляр и на его пересечении с осью цилиндра определить центр первой вспомогательной сферы — точку .
1.3. Провести окружность — проекцию вспомогательной сферы-посредника — с центром в точке , радиус которой определяется расстоянием от точки до одной из крайних точек или прямой .
2-е действие. Построить проекцию окружности пересечения построенной сферы-посредника с поверхностью соосного ей цилиндра — это прямая , проходящая через точки и пересечения очерков цилиндра и сферы-посредника.
3-е действие. Определить на пересечении построенных проекций заданной окружности и построенной окружности совпадающие точки , принадлежащие искомой линии пересечения заданных поверхностей.
Дополнительные действия:
4-е действие. Повторить действия графического алгоритма и построить достаточное количество точек линии пересечения. В данном примере дополнительными сечениями вспомогательных плоскостей и и вспомогательными сферами и с центрами и построены точки 2 и 3, принадлежащие линии пересечения. Причем в плоскости окружности сечений совпадают и совпадающие точки 3 делят существование этих окружностей на две половины — верхняя часть принадлежит цилиндру, а нижняя — тору.
5-е действие. Соединить на фронтальной проекции точки линии пересечения плавной видимой кривой.
6-е действие. Оформить очерки поверхностей на заданной проекции.
На рис. 8.15 показан пример построения линии пересечения наклонного кругового цилиндра с осью и наклонного эллиптического цилиндра с осью , у которого есть круговые сечения в горизонтальных плоскостях уровня.
Выполнить графический анализ условия и исключить нерациональный способ решения задачи.
Рассмотренный способ вспомогательных секущих плоскостей применять не следует, так как на заданной фронтальной проекции ни одна плоскость уровня не пересекает поверхности одновременно по окружностям или образующим (одно из условий применения).
Рассмотренный способ вспомогательных концентрических сфер применять нельзя, так как проведенные сферы с центром в точке пересечения осей образуют соосные пары только с одной заданной поверхностью (одно из условий применения).
Выбираем для решения задачи способ вспомогательных эксцентрических сфер, так как здесь соблюдены три условия его применения:
- пересекаются наклонный круговой цилиндр и эллиптический цилиндр (поверхность не вращения);
- общая плоскость симметрии поверхностей является фронтальной плоскостью уровня (подразумевается);
- оси поверхностей и — пересекаются.
Решение задачи, то есть введение сечений цилиндра (параллельных заданному) горизонтальными плоскостями уровня , начинаем на фронтальной проекции предмета, так как общая плоскость симметрии является фронтальной плоскостью уровня и точки и пересечения фронтальных очерков принадлежат линии пересечения.
Определяем границы введения сечений цилиндра — это точки и пересечения фронтальных очерков пересекающихся геометрических тел.
Построить проекции точек линии пересечения поверхностей, выполнив действия предложенного графического алгоритма II.
Графический алгоритм II.
1-е действие. Ввести вспомогательную сферу, выполнив предварительные графические действия.
1.1. Задать произвольное круговое сечение эллиптического цилиндра горизонтальной плоскостью — прямую . Эта заданная линия -окружность пересечения эллиптического цилиндра с искомой вспомогательной сферой, центр которой лежит на перпендикуляре, проведенном из середины этой прямой.
1.2. Провести к прямой через ее середину перпендикуляр и на пересечении с осью кругового цилиндра определить точку — центр первой вспомогательной сферы-посредника.
1.3. Провести окружность сферы-посредника радиусом , который определяется расстоянием от точки до одной из точек или прямой .
2-е действие. Построить проекцию окружности пересечения сферы-посредника с соосной ей поверхностью кругового цилиндра — это прямая , проходящая через точки пересечения очерков сферы и цилиндра.
3-е действие. Определить на пересечении заданной окружности и построенной окружности совпадающие точки , принадлежащие искомой линии пересечения.
4-е действие. Повторить действия графического алгоритма II и построить проекции точек ;
5-е действие. Соединить на фронтальной проекции точки линии пересечения плавной видимой кривой.
6-е действие. Оформить очерки поверхностей на заданной проекции.
Структуризация материала восьмой лекции в рассмотренном объеме схематически представлена на рис. 8.16 (лист 1). На последующих листах 2-5 приведены иллюстрации к этой схеме для быстрого визуального закрепления изученного материала при повторении (рис. 8.17-8.20).
Эта теория взята со страницы лекций для 1 курса по предмету «начертательная геометрия»:
Возможно эти страницы вам будут полезны:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
📹 Видео
линия пересечения конуса и усеченной сферыСкачать
Линия пересечения конуса и цилиндра (метод концентричных секущих сфер)Скачать
Метод концентрических сферСкачать
Лекция 12. Пересечение поверхностей метод плоскостейСкачать
Пересечение конуса и сферыСкачать
Пересечение поверхностей конуса и четырехгранной призмы. Пошаговое видео. Инженерная графикаСкачать