Лемма 255 геометрия вневписанная окружность

Вневписанные окружности

Теорема 1 . В любом треугольнике биссектрисы двух внешних углов и биссектриса внутреннего угла, не смежного с ними, пересекаются в одной точке.

Доказательство . Рассмотрим произвольный треугольник ABC и продолжим, например, стороны BA и BC за точки A и C соответственно (рис.1).

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Проведём биссектрисы углов DAC и ECA , которые являются внешними углами треугольника ABC . Обозначим точку пересечения этих биссектрис буквой O . Докажем, что точка O лежит на биссектрисе угла ABC , который является внутренним углом треугольника ABC , не смежным с внешними углами DAC и ECA . С этой целью опустим из точки O перпендикуляры OF , OG и OH на прямые AB , AC и BC соответственно. Поскольку AO – биссектриса угла DAC , то справедливо равенство:

Следовательно, справедливо равенство

Замечание 1 . В ходе доказательства теоремы 1 мы установили, что справедливы равенства

откуда вытекает, что точки F , G и H лежат на одной окружности с центром в точке O .

Определение . Окружность называют окружностью, вневписанной в треугольник , или вневписанной окружностью, если она касается касается одной стороны треугольника и продолжений двух других сторон (рис.2).

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Замечание 2 . У каждого треугольника существуют три вневписанных окружности. На рисунке 2 изображена одна из них.

Замечание 3 . Центр вневписанной окружности, изображенной на рисунке 2, лежит на биссектрисе угла B , а окружность касается стороны b . Для удобства обозначений и терминологии будем называть эту окружность вневписанной окружностью, касающейся стороны b , и обозначать её радиус символом rb .

Теорема 2 . Пусть вневписанная окружность касается стороны AC треугольника ABC . Тогда отрезки касательных касательных от вершины B до точек касания с вневписанной окружностью равны полупериметру треугольника.

Доказательство . Снова рассмотрим рисунок 2 и докажем, что выполнено равенство

Лемма 255 геометрия вневписанная окружность

где a, b, c – стороны треугольника ABC . Действительно, отрезки AG и AF равны, как отрезки касательных к окружности, выходящих из точки A . Отрезки CG и CH равны, как отрезки касательных к окружности, выходящих из точки C . Отрезки BF и BH равны, как отрезки касательных к окружности, выходящих из точки B . Отсюда получаем:

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

где буквой p обозначен полупериметр треугольника ABC . Теорема 2 доказана.

Теорема 3 . Радиус вневписанной окружности , касающейся стороны b , вычисляется по формуле

Лемма 255 геометрия вневписанная окружность

где буквой S обозначена площадь треугольника ABC , а буквой p обозначен полупериметр треугольника ABC .

Доказательство . Снова рассмотрим рисунок 2 и заметим, что выполнены равенства

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Следовательно, справедливо равенство

Лемма 255 геометрия вневписанная окружность

что и требовалось доказать.

Следствие . Радиусы двух других вневписанных в треугольник ABC окружностей вычисляются по формулам:

Лемма 255 геометрия вневписанная окружность

Теорема 4 . Если обозначить буквой r радиус вписанной в треугольник ABC окружности, то будет справедлива формула:

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Складывая эти формулы и воспользовавшись формулой для радиуса вписанной окружности

Лемма 255 геометрия вневписанная окружность,

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

что и требовалось доказать.

Теорема 5 . Площадь треугольника можно вычислить по формуле

Лемма 255 геометрия вневписанная окружность

Доказательство . Перемножим формулы

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

что и требовалось доказать.

Теорема 6 . Если обозначить буквой R радиус описанной около треугольника ABC окружности, то будет справедлива формула:

Доказательство . Воспользовавшись формулами для радиусов вписанной и вневписанных окружностей, а также формулой Герона, получим

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Преобразуем выражение, стоящее в квадратной скобке:

Видео:Задача №255 [НЕДЕТСКАЯ ГЕОМЕТРИЯ #1]Скачать

Задача №255 [НЕДЕТСКАЯ ГЕОМЕТРИЯ #1]

Вневписанная окружность треугольника.

Лемма 255 геометрия вневписанная окружность

Определение.

Окружность, касающаяся стороны треугольника и продолжения двух других его сторон, называется вневписанной окружностью треугольника.

Теорема 1.

Центр окружности, вневписанной в треугольник, есть точка пересечения биссектрис двух внешних и одного внутреннего угла треугольника.

Лемма 255 геометрия вневписанная окружность

Доказательство.

BF — биссектриса ∠JBG, следовательно F равноудалена от сторон данного угла.

СF — биссектриса ∠JСH, следовательно F равноудалена от сторон данного угла.

Следовательно, точка F равноудалена от сторон ∠BAC.

Таким образом, точка F — центр окружности, касающейся стороны BC и продолжения сторон AB и AC. По определению данная окружность называется вневписанной окружностью треугольника.

Теорема 2.

Отрезок, соединяющий вершину треугольника с точкой касания вневписанной окружности и противолежащей стороны, делит треугольник на два треугольника равного периметра.

Лемма 255 геометрия вневписанная окружность

Доказательство.

BJ=BG, GC=CH и AJ=AH (свойство отрезков касательных, проведенных из одной точки к окружности).

PΔABC=AB+ BC +AC=AB+ BG + GC +AC=AB+ BJ + AC +CH=AJ+AH.

Так как AJ=AH, то PΔABC/2=AJ=AH и PΔABC/2+AG=AJ+AG=AH+AG=AB+BG+GA=AC+CG+GA.

Следовательно, отрезок AG поделил треугольник ABC на два треугольника равного периметра PΔABC/2+AG.

Видео:СЕКРЕТНАЯ "Лемма 255" в №16 из ЕГЭ 2020 по профильной МАТЕМАТИКЕСкачать

СЕКРЕТНАЯ "Лемма 255" в №16 из ЕГЭ 2020 по профильной МАТЕМАТИКЕ

Вневписанная окружность (8 — 9 класс)

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

Методическая разработка по геометрии «Вневписанная окружность».

Литвинова Светлана Александровна,

учитель высшей квалификационной категории

МОУ гимназии № 7 г. Волгограда,

Тараева Галина Юрьевна,

учитель высшей квалификационной категории

МОУ гимназии № 7 г. Волгограда.

Действующие школьные программы по математике не предусматривают изучение понятия вневписанной окружности треугольника. Однако с ним полезно ознакомиться, так как решение некоторых типов геометрических задач, и, прежде всего задач на построение, связано с использованием этого понятия.

Вневписанная окружность представляется изысканным элементом геометрии треугольника. А вот знакомство с ней зачастую ограничивается определением, нахождением ее центра и решением нескольких популярных задач, встречающихся на конкурсных экзаменах. Но при более подробном знакомстве с вневписанной окружностью можно увидеть в ней скрытую красоту и силу.

Простейший из многоугольников – треугольник – играет в геометрии особую роль. За несколько тысячелетий геометры столь подробно изучили треугольник, что иногда говорят о «геометрии треугольника» как о самостоятельном разделе элементарной геометрии.

Первые упоминания о треугольнике и его свойствах мы находим в египетских папирусах, которым более 4000 лет. Через 2000 лет в Древней Греции изучение свойств треугольника достигает высокого уровня – достаточно вспомнить теорему Пифагора и формулу Герона.

Центральное место в геометрии треугольника занимают свойства так называемых замечательных точек и линий.

Три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке – центре описанной около треугольника окружности.

Биссектрисы трех внутренних углов треугольника пересекаются в одной точке – центре вписанной в треугольник окружности.

Если рассмотреть дополнительно биссектрисы трех пар внешних углов треугольника, то получаются еще три замечательных точки – центры вневписанных окружностей.

В XV — XVI веках появилось огромное количество исследований свойств треугольника. Эти исследования составили большой раздел планиметрии, получивший название «Новая геометрия треугольника». Вот одна из замечательных теорем того времени, принадлежащая Л. Эйлеру: «Середины сторон треугольника, основания его высот и середины отрезков высот от вершины до точки их пересечения лежат на одной окружности». Она обычно называется окружностью девяти точек (по количеству замечательных точек, через которые она проходит).

У каждого треугольника имеется, и притом только единственная, окружность девяти точек. Это – окружность, проходящая через следующие три тройки точек, положение которых определено для треугольника (рис.1): основания его высот D1, D2, и D3,, основания его медиан D4, D 5 и D 6, середины D7, D8 и D9 отрезков прямых от точки пересечения его высот H до его вершин.

ЭЛемма 255 геометрия вневписанная окружностьта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта немецким математиком XIX века К. Фейербахом (братом известного философа).

Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это – точки ее касания с четырьмя окружностями. Одна из этих окружностей вписанная, остальные три – вневписанные (рис.2).

ТЛемма 255 геометрия вневписанная окружностьочки касания этих окружностей с окружностью девяти точек D10 , D11 , D12 и D13 называются точками Фейербаха. Таким образом, окружность девяти точек в действительности является окружностью тринадцати точек.

Лемма 255 геометрия вневписанная окружностьРис.3.

Прямые в треугольнике, соединяющие его вершины с точками касания вневписанных окружностей, пересекаются в одной точке (рис.3), которая называется точкой Нагеля в честь открывшего ее немецкого математика Августа Нагеля (1821-1903).

I . Вневписанная окружность и ее свойства

1. Задачи, приводящие к понятию вневписанной окружности

В курсе геометрии 8-го класса при изучении темы «Вписанная и описанная окружности» предлагается вписать окружность в произвольный треугольник. Решение данной задачи однозначно. Но стоит изменить условие следующим образом «Построить окружность, касающуюся трех данных несовпадающих прямых AB, BC и CA», как однозначность решения пропадает.

Выясним, какие вообще бывают окружности, касающиеся трех данных прямых.

Так как прямые не совпадают, то точки А, В и С не лежат на одной прямой. Центр окружности, касающейся двух прямых, лежит на биссектрисах углов, полученных при пересечении этих прямых (рис.4).

РЛемма 255 геометрия вневписанная окружностьис.4.

Поэтому центры окружностей, касающихся прямых AB, BC и CA лежат на биссектрисах внешних или внутренних углов треугольника (или же на их продолжениях) (рис.5).

Лемма 255 геометрия вневписанная окружность

В итоге получаем четыре окружности с центрами О, Оа, Оb, Ос, касающиеся трех данных несовпадающих прямых. При этом одна из них будет вписанной в треугольник окружностью, а три других — вневписанными окружностями.

Лемма 255 геометрия вневписанная окружностьСуществует еще одна проблема, приводящая к понятию вневписанной окружности. Нетрудно с помощью циркуля и линейки построить треугольник по его сторонам. Чуть труднее сделать это по медианам или высотам. А вот построить треугольник по биссектрисам (в общем случае) невозможно. Если провести все три биссектрисы внешних углов треугольника, то образуются три точки их пересечения. Каждая из этих точек одинаково отстоит от прямых, содержащих стороны данного треугольника. Поэтому можно провести окружность с центром в такой точке, касающуюся всех сторон треугольника или их продолжений. Такие окружности и будут вневписанными.

2. Определение вневписанной окружности, ее центр и радиус

Дадим определение вневписанной окружности.

Определение: Вневписанной окружностью треугольника называется окружность, касающаяся одной из его сторон и продолжений двух других.

Лемма 255 геометрия вневписанная окружность

Для каждого треугольника существует три вневписанных окружности, которые расположены вне треугольника, почему они и получили название вневписанных.

Центрами вневписанных окружностей являются точки пересечения биссектрис внешних углов треугольника.

Доказательство этого следует из основного свойства биссектрисы угла: все точки, лежащие на ней равноудалены от сторон угла.

С другой стороны, центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах.

Данное свойство вытекает из следующей теоремы.

Теорема 1. Биссектриса внутреннего угла ВАС треугольника АВС и биссектрисы двух внешних углов при вершинах В и С пересекаются в одной точке.

Доказательство. Проведем внешние биссектрисы из вершин В и С. Пусть они пересекаются в точке Оа. Докажем, что биссектриса угла ВАС проходит через точку Оа. Все точки биссектрисы СОа равноудалены от сторон угла, значит, расстояние от точки Оа до прямых ВС и АС равны, так как Оа лежит на биссектрисе угла ВСК1, то есть ОаК1 = ОаК3.

ис.7. Аналогично, равны расстояния от точки Оа до прямых ВС и АВОаК2 = ОаК3 . Тогда очевидно, что точка Оа равноудалена от прямых АС и АВ, то есть лежит на биссектрисе угла ВАС.

Лемма 255 геометрия вневписанная окружность

Из теоремы 1 следует существование окружности с центром в точке Оа, касающейся прямых АС, АВ и ВС. Данную окружность и называют вневписанной окружностью.

Таким образом, шесть биссектрис треугольника – три внутренние и три внешние – пересекаются по три в четырех точках – центрах вписанной и трех вневписанных окружностей.

Радиусом вневписанной окружности является отрезок перпендикуляра, проведенного из центра окружности к какой-либо стороне треугольника или ее продолжению.

3. Свойства вневписанной окружности и её связь с основными элементами треугольника

Теорема 2. Пусть К1 – точка касания вневписанной окружности с продолжением стороны АС треугольника АВС. Тогда длина отрезка АК1 равна полупериметру треугольника АВС.

Из курса планиметрии известны формулы, устанавливающие связи между сторонами треугольника, его площадью и радиусами вписанной и описанной окружностейЛемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность. Существует аналогичная связь и с радиусами вневписанных окружностей.

Утверждение. Пусть Лемма 255 геометрия вневписанная окружностьсоответственно площадь, полупериметр и стороны некоторого треугольника, а Лемма 255 геометрия вневписанная окружность— радиусы вневписанных окружностей, то Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружностьи Лемма 255 геометрия вневписанная окружность.

Доказательство. Центром окружности, вписанной в угол А, служит точка Оа (точка пересечения биссектрис внешних углов треугольника, не смежных с углом А; радиус этой окружности есть отрезок перпендикуляра, проведенного из точки Оа к какой-либо стороне треугольника (или ее продолжению): Лемма 255 геометрия вневписанная окружность.

Лемма 255 геометрия вневписанная окружность

Аналогично можно найти центры Лемма 255 геометрия вневписанная окружностьи радиусы Лемма 255 геометрия вневписанная окружностьдвух других вневписанных окружностей.

Зная длины сторон Лемма 255 геометрия вневписанная окружностьтреугольника ABC , можно вычислить длины Лемма 255 геометрия вневписанная окружность.

Действительно, Лемма 255 геометрия вневписанная окружность, где Лемма 255 геометрия вневписанная окружность.

Отсюда Лемма 255 геометрия вневписанная окружность. Аналогично: Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность.

Для радиуса вписанной окружности Лемма 255 геометрия вневписанная окружность.

На основании доказанного можно сформулировать следующую теорему.

Теорема 3. Площадь S треугольника АВС равна Лемма 255 геометрия вневписанная окружность

Радиусы описанной, вписанной и вневписанных окружностей также связаны красивыми соотношениями:

Лемма 255 геометрия вневписанная окружность(1),

Лемма 255 геометрия вневписанная окружность(2),

Лемма 255 геометрия вневписанная окружность(3),

где Лемма 255 геометрия вневписанная окружность— радиусы вневписанных окружностей, R и r – соответственно радиусы описанной и вписанной окружностей, р – полупериметр, S- площадь треугольника.

Докажем равенство (1):

Учитывая, что Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, имеем: Лемма 255 геометрия вневписанная окружность= =Лемма 255 геометрия вневписанная окружность=

=Лемма 255 геометрия вневписанная окружность=Лемма 255 геометрия вневписанная окружность

= Лемма 255 геометрия вневписанная окружность, так как по формуле Герона Лемма 255 геометрия вневписанная окружность.

С другой стороны: Лемма 255 геометрия вневписанная окружность= Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность=Лемма 255 геометрия вневписанная окружность. Таким образом Лемма 255 геометрия вневписанная окружность.

Докажем равенство (2): Лемма 255 геометрия вневписанная окружность=

=Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

= Лемма 255 геометрия вневписанная окружность.

Докажем равенство (3): Лемма 255 геометрия вневписанная окружность.

Известно, что расстояние Лемма 255 геометрия вневписанная окружностьмежду центрами вписанной и описанной окружностей можно найти по формуле Эйлера: Лемма 255 геометрия вневписанная окружность.

ИЛемма 255 геометрия вневписанная окружностьнтересно, что отрезки, соединяющие центр вписанной в треугольник окружности с центрами вневписанных окружностей, делятся пополам окружностью, описанной вокруг этого треугольник (рис.9).

Существует также теорема, связывающая между собой радиусы вписанной и вневписанных окружностей.

Теорема 4. Радиус вписанной окружности треугольника равен Лемма 255 геометрия вневписанная окружностьсреднего гармонического радиусов вневписанных окружностей этого треугольника, т.е. Лемма 255 геометрия вневписанная окружность.

Доказательство. Как известно, среднее гармоническое неотрицательных чисел Лемма 255 геометрия вневписанная окружностьвычисляется по формуле Лемма 255 геометрия вневписанная окружность, значит, среднее гармоническое радиусов вневписанных окружностей треугольника будет равна Лемма 255 геометрия вневписанная окружность.

Преобразуем выражение Лемма 255 геометрия вневписанная окружность.

Лемма 255 геометрия вневписанная окружность. Следовательно, Лемма 255 геометрия вневписанная окружность.

Очевидно следующее следствие этой теоремы: обратное значение радиуса вписанной окружности равно сумме обратных значений радиусов вневписанных окружностей треугольника.

Если Лемма 255 геометрия вневписанная окружность, то Лемма 255 геометрия вневписанная окружность.

С использованием понятия «вневписанная окружность треугольника» можно доказать формулу Герона Лемма 255 геометрия вневписанная окружность. Прежде чем перейти к доказательству, решим две задачи.

Задача 1. Пусть а, в, с – длины сторон треугольника АВС. Найти длины отрезков, на которые делятся его стороны точками касания вписанной в него окружности.

Р Лемма 255 геометрия вневписанная окружность

ешение. Если M , P и N – точки касания, то, обозначив AM через х и воспользовавшись Рис.10. свойством отрезков касательных,

проведенных к окружности из одной точки, получим: AP = x,

ВР = BN = с – x, CM = CN = b — x. Но BN + NC = a. Отсюда с – х + b – x = a, поэтому Лемма 255 геометрия вневписанная окружность. Таким образом, AP = AM = p – a. Так же можно вычислить и A x M b x C

длины других отрезков: Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность.

Задача 2. Дан треугольник АВС; a, b, c – его стороны. Найти длины отрезков, на которые делят стороны треугольника точки касания вневписанных окружностей.

Лемма 255 геометрия вневписанная окружность

Решение. Пусть AQ = у. Тогда AS = y, QC = CT = b — y, BS=BT, а поэтому

Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность.

Аналогично можно вычислить и длины других искомых отрезков.

Переходим к выводу формулы Герона Лемма 255 геометрия вневписанная окружность.

Доказательство. Треугольники АОМ и ОbAQ подобны, так как они прямоугольные и Лемма 255 геометрия вневписанная окружность, как дополняющие угол ОАМ до прямого (Лемма 255 геометрия вневписанная окружностькак острые углы прямоугольного треугольника АОМ, Лемма 255 геометрия вневписанная окружность, который равен 90  как угол, образованный биссектрисами двух смежных углов).

Из подобия треугольников АОМ и ОbAQ следует Лемма 255 геометрия вневписанная окружность. После подстановки (Лемма 255 геометрия вневписанная окружность) получим Лемма 255 геометрия вневписанная окружность.

Из этой пропорции следует справедливость формулы Герона: Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность.

Так как Лемма 255 геометрия вневписанная окружностьЛемма 255 геометрия вневписанная окружностьи Лемма 255 геометрия вневписанная окружность, то имеют место следующие соотношения между радиусами вписанной и вневписанной окружностей Лемма 255 геометрия вневписанная окружностьи Лемма 255 геометрия вневписанная окружность.

Для доказательства соотношения Лемма 255 геометрия вневписанная окружностьвоспользуемся результатами выше рассмотренных задач и рис.11. Из подобия треугольников АОМ и ОbAQ следует Лемма 255 геометрия вневписанная окружность. Таким образом Лемма 255 геометрия вневписанная окружность, откуда следует справедливость равенства Лемма 255 геометрия вневписанная окружность

Отметим еще одно свойство, которое вытекает из данных задач: (рис.11) если M и Q – соответственно точки касания вписанной и вневписанной окружности с их общей касательной АС, то АМ = CQ.

II . Применение свойств вневписанной окружности

к решению задач

1. Решение задач на доказательство

Задача 1. Две непересекающиеся окружности с радиусами R1 и R2 касаются сторон прямого угла с вершиной А. Общая внутренняя касательная с окружностями пересекает стороны угла в точках В и С. Найти площадь треугольника АВС.

РЛемма 255 геометрия вневписанная окружностьешение. Так как обе окружности касаются сторон угла, то одна из них будет вписанной в треугольник АВС, а другая вневписанной. Пусть Лемма 255 геометрия вневписанная окружность, где R1 и R2 – соответственно радиусы вписанной и вневписанной окружностей (рис.1). Если О– центр вневписанной окружности, а точки К и М – ее точки касания со сторонами угла А. Легко доказать, что АКОМ – квадрат со стороной R2. По теореме 2 Лемма 255 геометрия вневписанная окружность. Но так как Лемма 255 геометрия вневписанная окружностьто Лемма 255 геометрия вневписанная окружность. А Лемма 255 геометрия вневписанная окружность. Отсюда следует Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность.

Ответ: площадь треугольника равна Лемма 255 геометрия вневписанная окружность

Задача 2. К двум непересекающимся окружностям проведены две общие внешние касательные и общая внутренняя касательная. Докажите, что отрезок внутренней касательной, заключенный между внешними касательными, равен отрезку внешней касательной, заключенному между точками касания.

Р Лемма 255 геометрия вневписанная окружность

ешение. Пусть даны две окружности. Точки касания окружностей с первой внешней касательной – А и В, со второй – С и D (рис 2.) Внутренняя касательная пересекает внешние в точках М и N . Продолжим прямые АВ и С D до их пересечения в точке К. Тогда окружность с центром О2 является вписанной в треугольник М NK , а окружность с центром О1— вневписанной. Обозначим сторону М N треугольника MNK через а и его полупериметр через р. Тогда (по т.2.) АК = р и ВК = р – а. Значит, АВ = а, т. е. АВ = М N . Аналогично CD = MN.

Задача 3. В равнобедренном треугольнике с основанием 12 вписана окружность, к ней проведены три касательные так, что они отсекают от данного треугольника три малых треугольника. Сумма периметра малых треугольников равна 48. Найдите боковую сторону данного треугольника.

Лемма 255 геометрия вневписанная окружностьА

1. Лемма 255 геометрия вневписанная окружность

2. Окружность с центром О – вневписанная окружность треугольников Е A L, BKF и PDC .

Поэтому Лемма 255 геометрия вневписанная окружность , Лемма 255 геометрия вневписанная окружность , Лемма 255 геометрия вневписанная окружность , Лемма 255 геометрия вневписанная окружность , Лемма 255 геометрия вневписанная окружность , Лемма 255 геометрия вневписанная окружность

Из этого следует, что Лемма 255 геометрия вневписанная окружность .

Значит, Лемма 255 геометрия вневписанная окружность .

Задача 4. Прямые РА и РВ касаются окружности с центром О ( А и В – точки касания). Проведена третья касательная к окружности, пересекающая отрезки РА и РВ в точках Х и У. Докажите, что величина угла ХОУ не зависит от выбора третьей касательной.

Р Лемма 255 геометрия вневписанная окружность

ешение. Так как касательные РА и РВ пересекаются, то угол АРВ обозначим . Точки Х и У лежат соответственно на отрезках РА и РВ, поэтому данная окружность будет вневписанной для треугольника ХРУ. Центр окружности лежит на пересечении биссектрис, значит Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность. Величина угла ХОУ соответственно равнаЛемма 255 геометрия вневписанная окружность. В треугольнике РХУ Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность. Величина угла АРВ заданная, тогда имеем:Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность. Величина угла ХОУ соответственно равна: Лемма 255 геометрия вневписанная окружностьи не зависит от выбора третьей касательной.

Задача 5. Доказать, что Лемма 255 геометрия вневписанная окружность.

Доказательство. Воспользуемся тем, что радиус вписанной окружности связан с высотами треугольника соотношением Лемма 255 геометрия вневписанная окружность. А по следствию из теоремы 4 о среднем гармоническом радиусов вневписанных окружностей треугольника имеем Лемма 255 геометрия вневписанная окружность. На основании этих двух равенств и следует справедливость исходного равенства.

Задача 6. Общая внутренняя касательная к окружностям с радиусами R и r пересекает их общие внешние касательные в точках А и В и касается одной из окружностей в точке С. Докажите, что Лемма 255 геометрия вневписанная окружность

ДЛемма 255 геометрия вневписанная окружностьоказательство.

На основании сформулированного в теоретической части свойства Лемма 255 геометрия вневписанная окружностьимеем:

Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность. Учитывая, что Лемма 255 геометрия вневписанная окружностьполучаем: Лемма 255 геометрия вневписанная окружность

Эту же задачу можно решить, используя другие свойства вневписанной окружности.

Пусть С и D – точки касания касательной АВ с вневписанной и вписанной окружностями. Тогда АВ = ММ1= NN 1 (задача 2), МВ = ВС, NA = АС, DA = AN 1.

NN1 = NA + AN1 = AC + AD, NN1 = AC + AD = 2AD + CD,

Таким образом, BD = AC. Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность. Что и требовалось доказать.

2. Задачи на построение

Задача 1. Построить треугольник по периметру и двум углам.

Дано: углы  и  , периметр треугольника P

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

1. Построить отрезок, равный полупериметру (АК).

2. Из точки А построить данный по условию угол  , а из точки К восстановить перпендикуляр.

3. Построить биссектрису угла САВ.

4. Построить окружность с центром в точке пересечения биссектрисы угла А с перпендикуляром ОаК и радиусом ОаК.

5. На отрезке АК построить второй данный угол  так, чтобы его луч был касательной к окружности.

6. Данная касательная пересечет вторую сторону угла в точке В.

Лемма 255 геометрия вневписанная окружность— искомый треугольник.

Задача 2. Постройте треугольник, если дана сторона, противолежащий ей угол треугольника и сумма двух других сторон.

Решение. Пусть дана сторона а, угол А и сумма сторон b + c . Тогда известна длина

Лемма 255 геометрия вневписанная окружностьполупериметра искомого треугольникаЛемма 255 геометрия вневписанная окружность. Значит, известны положения точек T 1 и T 2 на сторонах угла А. Восстановив перпендикуляры в этих точках к сторонам угла А, на их пересечении получим центр вневписанной окружности, а значит, вневписанная окружность построена.

Расстояние от точки Т1 до точки касания вписанной окружности равно а. Следовательно, мы можем найти точки касания вписанной окружности искомого треугольника со сторонами угла А и построить саму вписанную окружность. Общая внутренняя касательная к построенным окружностям отсекает на сторонах угла искомый треугольник.

Задача 3. Построить треугольник ABC , если известна сторона AB , радиус r вписанной окружности и радиус r c вневписанной окружности, касающейся стороны АВ и продолжений сторон АС и ВС. Рис.3.

Лемма 255 геометрия вневписанная окружность

Предположим, что искомый треугольник построен. Отметим точки касания Т и Тс с прямой АС вписанной и вневписанной окружностей (радиусов r и r c соответственно). Воспользуемся тем, что отрезки АВ и T Тс равны по длине. Отсюда вытекает способ построения: отмечаем на прямой две точки Т и Тс на расстоянии АВ, строим по одну сторону этой прямой окружности радиусов r и r c , касающиеся ее в точках Т и Тс, проводим еще одну внешнюю и одну внутреннюю общую касательную к этим окружностям – и нужный треугольник построен. Задача имеет решение в том и только в том случае, если Лемма 255 геометрия вневписанная окружность.

Задача 4. Дан угол К, меньший развернутого, и точка Р, расположенная внутри угла, смежного с данным. Провести через точку Р прямую, отсекающую от угла К треугольник заданного периметра.

Решение. Решение основано на применении теоремы, которая, казалось бы, очень далека от ситуации, описываемой в условии задачи, — теоремы о двух касательных, проведенных к окружности из одной точки.

П Лемма 255 геометрия вневписанная окружность

усть l – какая-либо проходящая через Р прямая. М и N – точки ее пересечения со сторонами угла. Проведем вневписанную окружность треугольника MKN. AM = ME и EN = NB, где А и В – точки касания окружности со сторонами угла. Тогда периметр отсекаемого треугольника равен Лемма 255 геометрия вневписанная окружность.

1. Построить отрезки касательных Лемма 255 геометрия вневписанная окружность.

2. Восстановить из точек А и В перпендикуляры, найти их точку пересечения Оа.

4. Построить из точки Р касательную к окружности.

3. Решение стереометрических задач

При решении задач, связанных с пирамидой, полезными являются следующие утверждения.

Утверждение 1. Следующие три предложения равносильны:

а) ортогональная проекция вершины пирамиды на плоскость основания является центром вписанной окружности в многоугольник, лежащий в основании;

б) высоты боковых граней – треугольников, проведенные из вершины пирамиды, равны и лежат на соответствующих боковых гранях;

в) двугранные углы при основании пирамиды равны.

Утверждение 2. Следующие три предложения равносильны:

а) ортогональная проекция вершины пирамиды на плоскость основания равноудалена от прямых, содержащих стороны основания пирамиды;

б) высоты боковых граней – треугольников, проведенные из вершины пирамиды, равны;

в) плоскости боковых граней образуют равные углы с плоскостью основания.

Задача 1. В основании пирамиды, все плоскости боковых граней которого наклонены к плоскости основания под углом , лежит правильный треугольник со стороной а. Найти объем пирамиды.

Решение. Следует отметить, что неопределенность решения возникает в связи с различным положением ортогональной плоскости. Пусть SABC – данная пирамида, О – ортогональная проекция вершины S на плоскость основания АВС. Согласно утверждению 3, точка О равноудалена от прямых АВ, АС и ВС. Не ограничивая общности рассуждений, имеем два случая расположения точки О:

Вершина тетраэдра проектируется в центр вписанной окружности.

Лемма 255 геометрия вневписанная окружностьРис .1. S Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность

h B Лемма 255 геометрия вневписанная окружность,

A О  M Лемма 255 геометрия вневписанная окружность.

Вершина тетраэдра проектируется в центр вневписанной окружности.

Лемма 255 геометрия вневписанная окружностьS А

Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность.

Лемма 255 геометрия вневписанная окружность.

Ответ: 1) Лемма 255 геометрия вневписанная окружность; 2) Лемма 255 геометрия вневписанная окружность.

Задача 2. Следует отметить, что если решать задачу в привычной формулировке, используемой в школьном учебнике: «Длины сторон основания треугольной пирамиды равны a, b и c. Боковые грани с основанием пирамиды составляют угол  . Вычислить объем пирамиды», то задача будет иметь только одно решение: на основании утверждения 1. вершина пирамиды проектируется в центр окружности, вписанной в основание пирамиды.

«Длины сторон основания треугольной пирамиды равны a, b и c. Плоскости боковых граней с плоскостью основания пирамиды составляют угол  . Вычислить объем пирамиды»

В такой формулировке условию задачи соответствуют четыре пирамиды, имеющие общее основание и отличающиеся только высотами: Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность.

После преобразований получаем Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность.

Очевидно, что, если треугольник, лежащий в основании пирамиды разносторонний, имеем четыре различных значения искомого объема пирамиды, если треугольник равнобедренный – три, правильный – два.

Процесс решения таких задач вполне доступен, если предварительно познакомиться с понятием вневписанной окружности.

В заключение мы еще раз хотим сказать, что геометрия начинается с треугольника. Треугольник неисчерпаем. Две с половиной тысячи лет постоянно открываются его новые свойства. Чтобы рассказать обо всех известных, необходим том, сравнимый по объему с томом Большой энциклопедии.

А изящество и красота применения окружности создают ощущение ее элитарности. К сожалению, в школьной программе этой фигуре уделяется незначительное время и внимание. А про вневписанную окружность и не упоминается.

В своей работе мы проиллюстрировали связь вневписанной окружности с основными элементами треугольника и показали применение этих свойств к решению задач различного типа.

На наш взгляд данная работа может быть использована на уроках геометрии в 8-11 классах, на занятиях математического кружка, факультативах и при решении конкурсных задач.

Задания для самостоятельной работы

1. Лемма 255 геометрия вневписанная окружность

2. Лемма 255 геометрия вневписанная окружность

3. Лемма 255 геометрия вневписанная окружность

4. Лемма 255 геометрия вневписанная окружность, где Лемма 255 геометрия вневписанная окружность— угол А треугольника АВС

5. Четырехугольник ABCD обладает тем свойством, что существует окружность, вписанная в угол BAD и касающаяся продолжений сторон ВС и CD . Докажите, что Лемма 255 геометрия вневписанная окружность.

6. Дан параллелограмм ABCD . Вневписанная окружность треугольника ABD касается продолжений сторон AD и AB в точках M и N . Докажите, что точки пересечения отрезка M N с BC и CD лежат на вписанной окружности треугольника BCD .

7. Пусть a и b две стороны треугольника. Как подобрать третью сторону с так, чтобы точки касания вписанной и вневписанной окружностей со стороной с делили эту сторону на три равных отрезка? При каких a и b такая сторона с существует?

8. Окружность радиуса 3, вписанная в треугольник ABC , касается стороны BC в точке Е. Окружность радиуса 4 касается продолжения сторон АВ и АС и касается стороны ВС в точке D . Найдите длину отрезка ED , если Лемма 255 геометрия вневписанная окружность. Ответ: Лемма 255 геометрия вневписанная окружность.

9. С помощью циркуля и линейки постройте точку, равноудаленную от трех данных прямых. (Комментарий: рассмотрите все возможные случаи взаимного расположения трех прямых на плоскости).

10. Отрезок, соединяющий вершину А треугольника ABC с центром Q вневписанной окружности, касающейся стороны ВС, пересекает описанную окружность этого треугольника в точке D . Докажите, что треугольник BDQ – равнобедренный.

11. Докажите, что сторона ВС треугольника ABC видна из центра О вписанной окружности под углом Лемма 255 геометрия вневписанная окружность, а из центра О1 вневписанной окружности, касающейся стороны ВС, — под углом Лемма 255 геометрия вневписанная окружность.

12. Доказать, что для любого треугольника отрезок, соединяющий центры вписанной и вневписанной окружности, делятся описанной окружностью пополам.

13. Вписанная окружность треугольника ABC касается стороны АС в точке D ; DM – ее диаметр. Прямая BM пересекает сторону АС в точке К. Докажите, что АК= DC .

14. Сторона правильного треугольника равна а. Найдите радиус вневписанной окружности.

15. Найдите радиусы вписанной и вневписанной окружностей треугольника со сторонами 5, 12, 13.

16. В треугольнике PQR величина угла QRP равна 60º. Найдите расстояние между точками касания со стороной QR окружности радиуса 2, вписанной в треугольник, и окружности радиуса 3, касающейся продолжений сторон PQ и PR .

17. Докажите, что если Лемма 255 геометрия вневписанная окружность, где Лемма 255 геометрия вневписанная окружность— стороны треугольника, Лемма 255 геометрия вневписанная окружность— соответственно радиус описанной, вписанной и одной вневписанной окружностей, то треугольник прямоугольный (подсказка: воспользуйтесь формулами Лемма 255 геометрия вневписанная окружность).

18. Сторона квадрата ABCD равна 1. На сторонах AB и А D выбраны точки P и Q так, что периметр треугольника APQ равен 2. Докажите, что Лемма 255 геометрия вневписанная окружность(подсказка: рассмотрите вневписанную окружность треугольника APQ ).

19. В треугольнике ABC с периметром величина острого угла BAC равна α. Окружность с центром в точке О касается стороны ВС и продолжения сторон АВ и АС в точках K , L и M соответственно. Точка D лежит внутри отрезка АК, AD = а. Найдите площадь треугольника DOK .

20. Пусть R — радиус описанной окружности треугольника ABC , Лемма 255 геометрия вневписанная окружность— радиус вневписанной окружности, касающейся стороны ВС. Докажите, что квадрат расстояния между центрами этих окружностей равен Лемма 255 геометрия вневписанная окружность.

21. С помощью циркуля и линейки постройте треугольник по центрам описанной и одной из вневписанных окружностей (подсказка: описанная окружность треугольника делит пополам отрезок, соединяющий центры вписанной и вневписанной окружностей).

22. Докажите, что если радиус вневписанной окружности равен полупериметру треугольника, то этот треугольник прямоугольный.

23. Через данную точку проведите прямую, отсекающую от данного угла треугольник наименьшего возможного периметра.

24. В основании пирамиды лежит правильный треугольник со стороной а. Двугранные углы между основанием и плоскостями боковых граней равны α. Найдите угол между боковыми гранями.

Решение некоторых задач из приложения

1. Доказать, что: Лемма 255 геометрия вневписанная окружность

Доказательство: так как Лемма 255 геометрия вневписанная окружностьа Лемма 255 геометрия вневписанная окружность, то Лемма 255 геометрия вневписанная окружность, ч.т.д.

2. Доказать, что: Лемма 255 геометрия вневписанная окружность.

1) Лемма 255 геометрия вневписанная окружность,

так как Лемма 255 геометрия вневписанная окружность;

2) Лемма 255 геометрия вневписанная окружность; Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность, ч.т.д.

3. Доказать, что: Лемма 255 геометрия вневписанная окружность.

Доказательство: Так как Лемма 255 геометрия вневписанная окружность, то Лемма 255 геометрия вневписанная окружность. Тогда Лемма 255 геометрия вневписанная окружность(с использованием формул Лемма 255 геометрия вневписанная окружность).

Лемма 255 геометрия вневписанная окружность Лемма 255 геометрия вневписанная окружностьи Лемма 255 геометрия вневписанная окружность. Таким образом, Лемма 255 геометрия вневписанная окружность.

9. С помощью циркуля и линейки постройте точку, равноудаленную от трех данных прямых. (Комментарий: рассмотрите все возможные случаи взаимного расположения трех прямых на плоскости).

1) Если все три прямые параллельны, то решений нет.

2) Если все три прямые пересекаются в одной точке, то эта точка является искомой.

3) Если две параллельные прямые пересекаются третьей, то задача имеет два решения.

Лемма 255 геометрия вневписанная окружностьa

4) Если прямые попарно пересекаются, то при пересечении они образуют треугольник и задача имеет четыре решения. В этом случае искомые точки – это центры вписанной в треугольник окружности и трех его вневписанных окружностей.

13. Вписанная окружность треугольника ABC касается стороны АС в точке D ; DM – ее диаметр. Прямая BM пересекает сторону АС в точке К. Докажите, что АК= DC .

Решение: Рассмотрим гомотетию с центром в точке В, переводящую вписанную окружность треугольника ABC в его вневписанную окружность, касающейся стороны АС.

Лемма 255 геометрия вневписанная окружность

Диаметр вневписанной окружности, соответствующий диаметру DM вписанной окружности касается стороны АС в точке К. Если Лемма 255 геометрия вневписанная окружность, F – точка касания вневписанной окружности с лучом ВА, то Лемма 255 геометрия вневписанная окружностьи Лемма 255 геометрия вневписанная окружность. Следовательно Лемма 255 геометрия вневписанная окружность.

14. Сторона правильного треугольника равна а. Найдите радиус его вневписанной окружности.

Лемма 255 геометрия вневписанная окружность C

Так как треугольник АВС равносторонний, то радиусы всех трех его вневписанных окружностей будут равны. Пусть Ос — центр вневписанной окружности, касающейся стороны АВ треугольника в точке М (середина АВ) и продолжений сторон АС и СВ в точках L и K соответственно.

Так как Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, то Лемма 255 геометрия вневписанная окружность. Ответ: Лемма 255 геометрия вневписанная окружность.

15. Найдите радиусы вписанной и вневписанной окружностей треугольника со сторонами 5, 12, 13.

Решение: Если a и b – катеты прямоугольного треугольника, а с – его гипотенуза, то искомые радиусы будут равны: Лемма 255 геометрия вневписанная окружность. Таким образом Лемма 255 геометрия вневписанная окружность. По-другому: Лемма 255 геометрия вневписанная окружность

Лемма 255 геометрия вневписанная окружность

a r Ответ: Лемма 255 геометрия вневписанная окружность

16. В треугольнике PQR величина угла QRP равна 60º. Найдите расстояние между точками касания со стороной QR окружности радиуса 2, вписанной в треугольник, и окружности радиуса 3, касающейся продолжений сторон PQ и PR .

Лемма 255 геометрия вневписанная окружность

Пусть О1 и О2 – центры окружностей радиусов 2 и 3 соответственно, M и N точки касания окружностей со стороной RQ . Тогда Лемма 255 геометрия вневписанная окружность,Лемма 255 геометрия вневписанная окружность. ПоэтомуЛемма 255 геометрия вневписанная окружность. Ответ: Лемма 255 геометрия вневписанная окружность.

19. В треугольнике ABC с периметром величина острого угла BAC равна α. Окружность с центром в точке О касается стороны ВС и продолжения сторон АВ и АС в точках K , L и M соответственно. Точка D лежит внутри отрезка АК, AD = а. Найдите площадь треугольника DOK .

Решение: Лемма 255 геометрия вневписанная окружность

A D B K По теореме 2:Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, Лемма 255 геометрия вневписанная окружность, так как Лемма 255 геометрия вневписанная окружность. Отсюда следует, что Лемма 255 геометрия вневписанная окружность.

Ответ: Лемма 255 геометрия вневписанная окружность.

Гнеденко Б.В. Энциклопедический словарь юного математика. М.: «Педагогика», 1989.

Н.Ф. Шарыгин, В.И. Голубев. Факультативный курс по математике: Решение задач. Учеб пособие для 11 кл. сред. шк. – М.: Просвещение, 1991, с. 138-140.

Андреев П.П., Шувалова Э.З. Геометрия.

Прасолов В.В. Задачи по планиметрии. Ч. I М.: Наука, 1986.

Никольская И.Л. Факультативный курс по математике: учебн. Пособие для 7-9 классов ср. школы. — М.: Просвещение, 1991, с.88-91.

Фетисов А.М. Геометрия: учебн. Пособие по программе старших классов. М.: Издательство Академии педагогических наук РСФСР, 1963, 20-21.

Березин В.И. и др. Сборник задач для факультативных и внеклассных занятий по математике. Книга для учителя. — М.: Просвещение, 1985.

Атанасян Л.С., Бутузов В.Ф.. С.Б. Кадомцев, Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы, 9 издание. — М.: Просвещение, 2000.

Энциклопедия для детей т.11. Математика/Глав.ред. М.Д. Аксенова.-М.: Аванта+, 2000.-с. 283

М.Г. Гохидзе «Вневписанная окружность», «Математика в школе», №3, 1989. с. 59

М.Г. Гохидзе «О вневписанной окружности в задачах по стереометрии», «Математика в школе», №5, 1987. с. 54.

«О свойствах центра вневписанной окружности», «Квант», №2, 2001, стр.38.

«Биссектрисы вписанной и вневписанной окружности треугольника», «Квант», №7, 1987.

Моденов П.С. Сборник задач по специальному курсу элементарной математики.- М.: советская наука, 1957.

Васильев Н.Б. и др. Заочные математические олимпиады. – М.: Наука. Главная редакция физико-математической литературы, 1981.

💡 Видео

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая Эйлера

ЕГЭ-2020. №16. Вневписанная окружность🚀 Ортоцентр. Теорема Карно, Бланшета, Чевы, Менелая🔥Скачать

ЕГЭ-2020. №16. Вневписанная окружность🚀 Ортоцентр. Теорема Карно, Бланшета, Чевы, Менелая🔥

#221. ЛЮТАЯ ДИЧЬ с IMO (математика)Скачать

#221. ЛЮТАЯ ДИЧЬ с IMO (математика)

Это будет на ЕГЭ 2020 по математике. Вписанная и вневписанная окружности.Скачать

Это будет на ЕГЭ 2020 по математике. Вписанная и вневписанная окружности.

Вневписанная окружностьСкачать

Вневписанная окружность

№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.Скачать

№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.

Из ВОРОБЬЕВ по ПУШКАМ🔥 Леммы, убивающие планиметрию💪🏻Скачать

Из ВОРОБЬЕВ по ПУШКАМ🔥 Леммы, убивающие планиметрию💪🏻

Пушечная лемма о воробьях. Планиметрия для ЕГЭ и олимпиад 2021Скачать

Пушечная лемма о воробьях. Планиметрия для ЕГЭ и олимпиад 2021

Лемма о трезубцеСкачать

Лемма о трезубце

Лемма Архимеда. Лемма Варьера. Геометрия для олимпиадСкачать

Лемма Архимеда. Лемма Варьера. Геометрия для олимпиад

Вебинар 3. Лемма о трезубце. Теорема Менелая, Чевы, Ван - Обеля. Свойства ортоцентра.Скачать

Вебинар 3. Лемма о трезубце. Теорема Менелая, Чевы, Ван - Обеля. Свойства ортоцентра.

№16. ЕГЭ 2020. Лемма о трезубце (о куриной лапке.) ЕГЭ и олимпиады по математикеСкачать

№16. ЕГЭ 2020. Лемма о трезубце (о куриной лапке.) ЕГЭ и олимпиады по математике

Лемма о трезубцеСкачать

Лемма о трезубце

ЕГЭ2020. Математика. №16. Ортоцентр. Вневписанная. Теорема Бланшета. Антипараллельность. СимедианаСкачать

ЕГЭ2020. Математика. №16. Ортоцентр. Вневписанная. Теорема Бланшета. Антипараллельность. Симедиана

Гармония четырехугольников (feat. МО из Школково)Скачать

Гармония четырехугольников (feat. МО из Школково)

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

ТОП-10 геометрических конструкций в #16 для ЕГЭ 2021Скачать

ТОП-10 геометрических конструкций в #16 для ЕГЭ 2021

Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

Геометрия 8 класс (Урок№32 - Вписанная окружность.)
Поделиться или сохранить к себе: