Квадрат вписан в окружность свойства

Квадрат вписанный в окружность

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Определение

Квадрат, вписанный в окружность — это квадрат, который находится
внутри окружности и соприкасается с ней углами.

На рисунке 1 изображена окружность, описанная около
квадрата
и окружность, вписанная в квадрат.
Квадрат вписан в окружность свойства

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Формулы

Радиус вписанной окружности в квадрат

  1. Радиус вписанной окружности в квадрат, если известна сторона:

Радиус вписанной окружности в квадрат, если известен периметр:

Радиус вписанной окружности в квадрат, если известна площадь:

Радиус вписанной окружности в квадрат, если известен радиус описанной окружности:

Радиус вписанной окружности в квадрат, если известна диагональ:

Радиус описанной окружности около квадрата

  1. Радиус описанной окружности около квадрата, если известна сторона:

Радиус описанной окружности около квадрата, если известен периметр:

Радиус описанной окружности около квадрата, если известнаплощадь:

Радиус описанной окружности около квадрата, если известен радиус вписанной окружности:

Радиус описанной окружности около квадрата, если известнадиагональ:

Сторона квадрата

  1. Сторона квадрата вписанного в окружность, если известнаплощадь:

Сторона квадрата вписанного в окружность, если известнадиагональ:

Сторона квадрата вписанного в окружность, если известен периметр:

Площадь квадрата

  1. Площадь квадрата вписанного в окружность, если известна сторона:

Площадь квадрата вписанного в окружность, если известен радиус вписанной окружности:

Площадь квадрата вписанного в окружность, если известен радиус описанной окружности:

Площадь квадрата вписанного в окружность, если известен периметр:

Площадь квадрата вписанного в окружность, если известна диагональ:

Периметр квадрата

  1. Периметр квадрата вписанного в окружность, если известна сторона:

Периметр квадрата вписанного в окружность, если известна площадь:

Периметр квадрата вписанного в окружность, если известенрадиус вписанной окружности:

Периметр квадрата вписанного в окружность, если известен радиус описанной окружности:

Периметр квадрата вписанного в окружность, если известна диагональ:

Диагональ квадрата

  1. Диагональ квадрата вписанного в окружность, если известна сторона:

Диагональ квадрата вписанного в окружность, если известна площадь:

Диагональ квадрата вписанного в окружность, если известен периметр:

Диагональ квадрата вписанного в окружность, если известен радиус вписанной окружности:

Диагональ квадрата вписанного в окружность, если известен радиус описанной окружности:

Видео:Как построить квадрат, два способаСкачать

Как построить квадрат, два способа

Квадрат

Квадрат вписан в окружность свойстваКвадрат – ромб, у которого все углы прямые.

Квадрат – прямоугольник с равными сторонами.

Квадрат – параллелограмм, у которого все стороны равны и все углы равны.

Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Свойства квадрата

Квадрат вписан в окружность свойства

Все свойства параллелограмма, ромба, прямоугольника верны для квадрата.

Видео:Квадрат в окружности или окружность в квадрате #ShortsСкачать

Квадрат в окружности или окружность в квадрате #Shorts

Признаки квадрата

Четырехугольник будет являться квадратом, если выполняется хотя бы одно из условий:

1. Все стороны равны и среди внутренних углов есть прямой угол.

2. Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.

3. Четырехугольник обладает поворотной симметрией: он не изменится при повороте на 90˚.

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Описанная окружность

Около квадрата можно описать окружность. Сторона Квадрат вписан в окружность свойстваи радиус Квадрат вписан в окружность свойстваокружности связаны соотношением: Квадрат вписан в окружность свойства

Квадрат вписан в окружность свойства

Видео:Как вписать квадрат в окружностьСкачать

Как вписать квадрат в окружность

Вписанная окружность

В квадрат можно вписать окружность. Радиус вписанной окружности Квадрат вписан в окружность свойстваи сторона квадрата связаны соотношением: Квадрат вписан в окружность свойства

Квадрат вписан в окружность свойства

Видео:Задача.Окружность и прямоугольник вписаны в квадрат.Скачать

Задача.Окружность и прямоугольник вписаны в квадрат.

Площадь квадрата

Квадрат вписан в окружность свойства

Смотрите также таблицу-шпаргалку «Площади простейших фигур» здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Квадрат. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):

Квадрат вписан в окружность свойства

Можно дать и другие определение квадрата.

Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.

Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Свойства квадрата

  • Длины всех сторон квадрата равны.
  • Все углы квадрата прямые.
  • Диагонали квадрата равны.
  • Диагонали пересекаются под прямым углом.
  • Диагонали квадрата являются биссектрисами углов.
  • Диагонали квадрата точкой пересечения делятся пополам.

Изложеннные свойства изображены на рисунках ниже:

Квадрат вписан в окружность свойстваКвадрат вписан в окружность свойстваКвадрат вписан в окружность свойстваКвадрат вписан в окружность свойстваКвадрат вписан в окружность свойстваКвадрат вписан в окружность свойства

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Диагональ квадрата

Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.

Квадрат вписан в окружность свойства

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Квадрат вписан в окружность свойства
Квадрат вписан в окружность свойства.(1)

Из равенства (1) найдем d:

Квадрат вписан в окружность свойства.(2)

Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.

Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:

Квадрат вписан в окружность свойства

Ответ: Квадрат вписан в окружность свойства

Видео:Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать

Задание 16 ОГЭ по математике. Две окружности одна  описана около квадрата, другая вписана в него.

Окружность, вписанная в квадрат

Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):

Квадрат вписан в окружность свойства

Видео:Euclidea - 1. Альфа (Alpha) - 1.7 - Квадрат, вписанный в окружностьСкачать

Euclidea - 1. Альфа (Alpha) - 1.7 - Квадрат, вписанный в окружность

Формула вычисления радиуса вписанной окружности через сторону квадрата

Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:

Квадрат вписан в окружность свойства(3)

Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.

Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:

Квадрат вписан в окружность свойства

Ответ: Квадрат вписан в окружность свойства

Видео:№1123. Из круга радиуса r вырезан квадрат, вписанный в окружность, которая ограничивает кругСкачать

№1123. Из круга радиуса r вырезан квадрат, вписанный в окружность, которая ограничивает круг

Формула вычисления сторон квадрата через радиус вписанной окружности

Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:

Квадрат вписан в окружность свойства(4)

Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.

Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:

Квадрат вписан в окружность свойства

Ответ: Квадрат вписан в окружность свойства

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Окружность, описанная около квадрата

Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):

Квадрат вписан в окружность свойства

Видео:СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностейСкачать

СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностей

Формула радиуса окружности описанной вокруг квадрата

Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.

Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:

Квадрат вписан в окружность свойства
Квадрат вписан в окружность свойства(5)

Из формулы (5) найдем R:

Квадрат вписан в окружность свойства
Квадрат вписан в окружность свойства(6)

или, умножая числитель и знаменатель на Квадрат вписан в окружность свойства, получим:

Квадрат вписан в окружность свойства.(7)

Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.

Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:

Квадрат вписан в окружность свойства

Ответ: Квадрат вписан в окружность свойства

Видео:ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 класс

Формула стороны квадрата через радиус описанной около квадрата окружности

Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.

Из формулы (1) выразим a через R:

Квадрат вписан в окружность свойства
Квадрат вписан в окружность свойства.(8)

Пример 5. Радиус описанной вокруг квадрата окружности равен Квадрат вписан в окружность свойстваНайти сторону квадрата.

Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя Квадрат вписан в окружность свойствав (8), получим:

Квадрат вписан в окружность свойства

Ответ: Квадрат вписан в окружность свойства

Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Периметр квадрата

Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:

Квадрат вписан в окружность свойства(9)

где Квадрат вписан в окружность свойства− сторона квадрата.

Пример 6. Сторона квадрата равен Квадрат вписан в окружность свойства. Найти периметр квадрата.

Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя Квадрат вписан в окружность свойствав (9), получим:

Квадрат вписан в окружность свойства

Ответ: Квадрат вписан в окружность свойства

Видео:Задание 26 Вписанный квадратСкачать

Задание 26 Вписанный квадрат

Признаки квадрата

Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.

Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом. Квадрат вписан в окружность свойства

Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).

Квадрат вписан в окружность свойства

Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть

Квадрат вписан в окружность свойства(10)

Так как AD и BC перпендикулярны, то

Квадрат вписан в окружность свойстваКвадрат вписан в окружность свойства(11)

Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда

Квадрат вписан в окружность свойства(12)

Эти реугольники также равнобедренные. Тогда

Квадрат вписан в окружность свойстваКвадрат вписан в окружность свойства(13)

Из (13) следует, что

Квадрат вписан в окружность свойства(14)

Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).Квадрат вписан в окружность свойства

🔍 Видео

ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематикаСкачать

ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематика
Поделиться или сохранить к себе: