Ключевые слова:квадрат, прямоугольник, диагональ, площадь квадрата
Прямоугольник, у которого все стороны равны, называется квадратом.
Свойства и признаки квадрата (необходимые и достаточные условия того, что четырехугольник — квадрат)
- Если четырехугольник — квадрат, то для него справедливы все следующие утверждения.
- Если для четырехугольника справедливо хотя бы одно из следующих утверждений, то он — квадрат.
Утверждения.
- Все стороны равны и среди внутренних углов есть прямой угол.
- Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.
- Четырехугольник имеет 4 оси симметрии: прямые, перпендикулярные сторонам и проходящие через их середины; прямые, содержащие диагонали.
- Четырехугольник обладает поворотной симметрией: он не изменится при повороте на $$90^circ$$.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Квадрат
Квадрат – ромб, у которого все углы прямые.
Квадрат – прямоугольник с равными сторонами.
Квадрат – параллелограмм, у которого все стороны равны и все углы равны.
Видео:ОГЭ 2023 математика 16 задание окружность квадрат площадьСкачать
Свойства квадрата
Все свойства параллелограмма, ромба, прямоугольника верны для квадрата.
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Признаки квадрата
Четырехугольник будет являться квадратом, если выполняется хотя бы одно из условий:
1. Все стороны равны и среди внутренних углов есть прямой угол.
2. Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.
3. Четырехугольник обладает поворотной симметрией: он не изменится при повороте на 90˚.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Описанная окружность
Около квадрата можно описать окружность. Сторона и радиус окружности связаны соотношением:
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Вписанная окружность
В квадрат можно вписать окружность. Радиус вписанной окружности и сторона квадрата связаны соотношением:
Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать
Площадь квадрата
Смотрите также таблицу-шпаргалку «Площади простейших фигур» здесь.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Видео:Метод выделения полного квадрата. 8 класс.Скачать
Квадратура круга: наглядное доказательство
Словесные доказательства с трудом даются тем, кто привык мыслить визуально. Поэтому в математике так важна визуальная интуиция. Доказательства из таких пособий, как и «Евклид Начала: первые 6 книг» и «Доказательства без слов: учебник по визуальному мышлению» даются пониманию при взгляде на их страницы. Я рекомендую эти книги к прочтению каждому, кто интересуется доказательствами других математических проблем.
К примеру, мы помним из школьного курса, что площадь круга вычисляется по формуле π x r², но можем ли мы доказать, что эта формула справедлива для каждой возможной окружности?
Величайший из математиков Евклид нашёл доказательства этой формулы настолько простое, что теперь студенты изучают начала интегрального исчисления по нему. Евклид рассуждал так: круг можно поделить на четыре, шесть, шестнадцать, или бесконечно много равных частей, а потом расставить их так, чтобы получился прямоугольник.
Первое что нам нужно сделать — начертить окружность. Затем, мы разделим круг на 8 равных частей и расставим их в похожую на прямоугольник форму. Мы почти получили прямоугольник.
Повторим процесс, на этот раз с 32 равными частями. Если расставить их таким же образом как в предыдущем примере, то мы получим что-то ещё более похожее на прямоугольник.
Это значит, что если разделить круг на ещё больше равных частей — происходит удивительное, форма начинает приближаться к идеальному прямоугольнику.
Насколько много должно быть частей чтобы получить идеальный прямоугольник? Для этого его части должны быть бесконечно малыми — такими, что невозможно различить толщину, и стороны становятся почти вертикальными.
Мы знаем, что площадь прямоугольника это его ширина x высота . Высота прямоугольника будет равна радиусу окружности. Чтобы найти ширину, нужно знать длину окружности. Если сравнить ширину прямоугольника и окружность, видно, что ширина это половина от длины окружности. Для длины окружности равной 2πr следует, что ширина должна быть πr.
Выражение ширина x высота означает тоже самое что π x r x r . Иными словами — квадрат радиуса, умноженный на π, то есть πr². Это и есть искомый прямоугольник, площадь которого равна площади круга.
Таким образом, πr² может использоваться для вычисления площади любой из существующих окружностей.
🔍 Видео
Математика это не ИсламСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Радиус и диаметрСкачать
Все про окружность для задания 16 на ОГЭ по математикеСкачать
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Длина окружности. Площадь круга. 6 класс.Скачать
Как построить квадрат, два способаСкачать
Длина окружности. Математика 6 класс.Скачать
НАПРЯГИТЕ МОЗГ, ответив на вопросы ТЕСТА НА ЭРУДИЦИЮ и КРУГОЗОР. #насколькостарвашмозг #викторинаСкачать
Площадь круга. Математика 6 класс.Скачать
Уравнение окружности (1)Скачать
ОКРУЖНОСТЬ КАСАЕТСЯ КВАДРАТАСкачать
Задание 16 ОГЭ по математике. Окружность описана около квадратаСкачать