Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Верные утверждения
Для того, чтобы найти нужное утверждение, воспользуйтесь поиском по сайту (вверху страницы) или сочетанием клавиш Ctrl+F.
- Задание 20 из ОГЭ. Анализ геометрических высказываний
- Квадрат не имеет центра симметрии центром окружности
- Геометрия. Урок 6. Анализ геометрических высказываний
- Задание 20 из ОГЭ. Анализ геометрических высказываний
- Осевая и центральная симметрия
- Что такое симметрия
- Осевая симметрия
- Центральная симметрия
- Задачи на самопроверку
- ВПР 8 класс. Математика. Задания 14. Анализ геометрических высказываний
- Просмотр содержимого документа «ВПР 8 класс. Математика. Задания 14. Анализ геометрических высказываний»
- Какие из следующих утверждений верны?
- Квадрат описан около окружности радиуса 3 см найти радиус окружности, описанной около квадрата?
- 1)Окружность вписанная в треугольник?
- Какое из следующих утверждений верно?
- Около квадрата со стороной 5(корень из 2) описана окружность?
- Отмете верные утверждения 21?
- Сторона правильного треугольника, вписанного в некоторую окружность, равна 4 корня из 3 — ёх?
- ПОМОГИТЕ1?
- Вокруг квадрата со стороной 6 см описана окружность?
- Найдите радиус окружности, описанной около равностороннего треугольника, если его сторона равно 15 / корень3?
- Около квадрата со стороной a описана окружность, а около окружности описан правильный треугольник?
- Найдите радиус окружности, описанной около треугольника АВС, если центр окружности О удален от стороны АВ = 24см на расстояние 9см?
Видео:Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать
Задание 20 из ОГЭ. Анализ геометрических высказываний
В данном уроке мы вспомним различные определения, теоремы и свойства из курса геометрии. Очень многие девятиклассники допускают ошибки именно в 13 задании ОГЭ “Анализ геометрических высказываний”. Здесь мы рассмотрим различные утверждения, которые встречаются в ОГЭ и разберём, какие из них являются верными, а какие нет и почему.
Для удобства, утверждения расклассифицированы по темам: Аксиомы, Углы, Треугольники, Четырехугольники, Окружности, Симметрия.
Объем утверждений достаточно большой, но есть хорошая новость: если с первого раза вы с утверждением согласны, если для вас оно очевидно, то зубрить его не надо. Стоит серьёзно отнестись к утверждениям, которые с первого раза очевидными не кажутся. Но и их зазубривать тоже не нужно, их надо осмыслить, понять. Сделайте картинку к такому утверждению, подумайте, почему оно верно (или неверно).
Зубрёжка – бесполезное занятие. Любое утверждение можно сформулировать по-разному, поэтому самое главное – это понимание. В любой непонятной ситуации делайте рисунок и размышляйте. Удачи!
Видео:Геометрия. ОГЭ по математике. Задание 16Скачать
Квадрат не имеет центра симметрии центром окружности
Видео:ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематикаСкачать
Геометрия. Урок 6. Анализ геометрических высказываний
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Верные утверждения
Для того, чтобы найти нужное утверждение, воспользуйтесь поиском по сайту (вверху страницы) или сочетанием клавиш Ctrl+F.
Видео:R и r для квадрата. Как вывести формулы радиуса вписанной и описанной окружностей для квадрата.Скачать
Задание 20 из ОГЭ. Анализ геометрических высказываний
В данном уроке мы вспомним различные определения, теоремы и свойства из курса геометрии. Очень многие девятиклассники допускают ошибки именно в 13 задании ОГЭ “Анализ геометрических высказываний”. Здесь мы рассмотрим различные утверждения, которые встречаются в ОГЭ и разберём, какие из них являются верными, а какие нет и почему.
Для удобства, утверждения расклассифицированы по темам: Аксиомы, Углы, Треугольники, Четырехугольники, Окружности, Симметрия.
Объем утверждений достаточно большой, но есть хорошая новость: если с первого раза вы с утверждением согласны, если для вас оно очевидно, то зубрить его не надо. Стоит серьёзно отнестись к утверждениям, которые с первого раза очевидными не кажутся. Но и их зазубривать тоже не нужно, их надо осмыслить, понять. Сделайте картинку к такому утверждению, подумайте, почему оно верно (или неверно).
Зубрёжка – бесполезное занятие. Любое утверждение можно сформулировать по-разному, поэтому самое главное – это понимание. В любой непонятной ситуации делайте рисунок и размышляйте. Удачи!
Видео:Задание 16 ОГЭ по математике. Окружность описана около квадратаСкачать
Осевая и центральная симметрия
О чем эта статья:
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Что такое симметрия
Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.
Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.
Центр симметрии — это точка, в которой пересекаются все оси симметрии.
Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.
Рассмотрите фигуры с осевой и центральной симметрией.
- Ось симметрии угла — биссектриса.
- Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
- Оси симметрии прямоугольника проходят через середины его сторон.
- У ромба две оси симметрии — прямые, содержащие его диагонали.
- У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
- Ось симметрии окружности — любая прямая, проведенная через ее центр.
Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Осевая симметрия
Вот как звучит определение осевой симметрии:
Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.
При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.
Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.
В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.
Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.
Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.
- Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
- Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
- С другой стороны прямой отложим такие же расстояния.
- Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
- Получаем два треугольника, симметричных относительно оси симметрии.
Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.
- Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
- Измеряем расстояние от вершин до точек на прямой.
- Откладываем такие же расстояния на другой стороне оси симметрии.
- Соединяем точки и строим треугольник A1B1C1.
Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.
- Проводим через точку А прямую, перпендикулярную прямой l.
- Проводим через точку В прямую, перпендикулярную прямой l.
- Измеряем расстояния от точек А и В до прямой l.
- Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
- Соединяем точки A1 и B1.
Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Центральная симметрия
Теперь поговорим о центральной симметрии — вот ее определение:
Центральной симметрией называется симметрия относительно точки.
Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.
Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.
Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).
- Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
- Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
- Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
- Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.
Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).
- Измеряем расстояние от точки B до точки О и от точки А до точки О.
- Проводим прямую из точки А через точку О и выводим ее на другую сторону.
- Проводим прямую из точки B через точку О и выводим ее на другую сторону.
- Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
- Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.
Видео:2092 найдите радиус окружности описанной около квадрата со стороной 27 корней из 2Скачать
Задачи на самопроверку
В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!
Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.
Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:
Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная
Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.
Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.
Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.
Видео:Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать
ВПР 8 класс. Математика. Задания 14. Анализ геометрических высказываний
ВПР 8 класс. Математика. Прототипы №14 с ответами. Анализ геометрических высказываний.
Источник : образовательный портал Решу ВПР
Просмотр содержимого документа
«ВПР 8 класс. Математика. Задания 14. Анализ геометрических высказываний»
Задания 14. Анализ геометрических высказываний
Укажите номер верного рассуждения.
1) Если угол равен 45°, то вертикальный с ним угол равен 45°.
2) Любые две прямые имеют ровно одну общую точку.
3) Через любые три точки проходит ровно одна прямая.
4) Если расстояние от точки до прямой меньше 1, то и длина любой наклонной, проведенной из данной точки к прямой, меньше 1.
2. Укажите номер верного утверждения.
1) Если при пересечении двух прямых третьей прямой соответственные углы равны 65°, то эти две прямые параллельны.
2) Любые две прямые имеют не менее одной общей точки.
3) Через любую точку проходит не более одной прямой.
4) Любые три прямые имеют не менее одной общей точки.
3. Укажите номер верного утверждения.
1) Каждая сторона треугольника меньше разности двух других сторон.
2) В равнобедренном треугольнике имеется не более двух равных углов.
3) Если сторона и угол одного треугольника соответственно равны стороне и углу другого треугольника, то такие треугольники равны.
4) В треугольнике ABC, для которого AB = 3, BC = 4, AC = 5, угол C наименьший.
4. Укажите номер верного утверждения.
1) В треугольнике против меньшего угла лежит большая сторона.
2) Если один угол треугольника больше 120°, то два других его угла меньше 30°.
3) Если все стороны треугольника меньше 1, то и хотя бы одна его высота больше 1.
4) Сумма острых углов прямоугольного треугольника не превосходит 90°.
5. Укажите номер верного утверждения.
1) Если расстояние между центрами двух окружностей равно сумме их диаметров, то эти окружности касаются.
2) Вписанные углы окружности равны.
3) Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.
4) Через любые четыре точки, не принадлежащие одной прямой, проходит единственная окружность.
6. Какие из следующих утверждений верны?
1) Вписанные углы, опирающиеся на одну и ту же хорду окружности, равны.
2) Если радиусы двух окружностей равны 5 и 7, а расстояние между их центрами равно 3, то эти окружности не имеют общих точек.
3) Если радиус окружности равен 3, а расстояние от центра окружности до прямой равно 2, то эти прямая и окружность пересекаются.
4) Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.
Если утверждений несколько, запишите их номера в порядке возрастания.
7. Укажите номер верного утверждения.
1) Через любые три точки проходит не более одной окружности.
2) Если расстояние между центрами двух окружностей больше суммы их диаметров, то эти окружности не имеют общих точек.
3) Если радиусы двух окружностей равны 3 и 5, а расстояние между их центрами равно 1, то эти окружности пересекаются.
4) Если дуга окружности составляет 80°, то вписанный угол, опирающийся на эту дугу окружности, равен 40°.
8. Укажите номер верного утверждения.
1) Сумма углов выпуклого четырехугольника равна 180°.
2) Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°.
3) Диагонали квадрата делят его углы пополам.
4) Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.
9. Укажите номер верного утверждения.
1) Если противоположные углы выпуклого четырехугольника равны, то этот четырехугольник — параллелограмм.
2) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.
3) Сумма двух противоположных углов четырехугольника не превосходит 180°.
4) Если основания трапеции равны 4 и 6, то средняя линия этой трапеции равна 10.
10. Укажите номер верного утверждения.
1) Если в параллелограмме диагонали равны, то этот параллелограмм — квадрат.
2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.
4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 130°.
11. Укажите номер верного утверждения.
1) Около любого ромба можно описать окружность.
2) В любой треугольник можно вписать не менее одной окружности.
3) Центром окружности, описанной около треугольника, является точка пересечения биссектрис.
4) Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.
12. Укажите номер верного утверждения.
1) Около всякого треугольника можно описать не более одной окружности.
2) В любой треугольник можно вписать не менее одной окружности.
3) Центром окружности, описанной около треугольника, является точка пересечения биссектрис.
4) Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.
13.Укажите номер верного утверждения.
1) Около любого правильного многоугольника можно описать не более одной окружности.
2) Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.
3) Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.
4) Около любого ромба можно описать окружность.
14. Укажите номер верного утверждения.
1) Окружность имеет бесконечно много центров симметрии.
2) Прямая не имеет осей симметрии.
3) Правильный пятиугольник имеет пять осей симметрии.
4) Квадрат не имеет центра симметрии.
15. Укажите номер верного утверждения.
1) Правильный шестиугольник имеет шесть осей симметрии.
2) Прямая не имеет осей симметрии.
3) Центром симметрии ромба является точка пересечения его диагоналей.
4) Равнобедренный треугольник имеет три оси симметрии.
16. Укажите номер верного утверждения.
1) Центром симметрии прямоугольника является точка пересечения биссектрис.
2) Центром симметрии ромба является точка пересечения его диагоналей.
3) Правильный пятиугольник имеет десять осей симметрии.
4) Центром симметрии равнобедренной трапеции является точка пересечения ее диагоналей.
17. Какие из следующих утверждений верны?
1) Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.
2) Любые два равнобедренных треугольника подобны.
3) Любые два прямоугольных треугольника подобны.
4) Треугольник ABC, у которого AB = 3, BC = 4, AC = 5, является тупоугольным.
Если утверждений несколько, запишите их номера в порядке возрастания.
18. Какие из следующих утверждений верны?
1) Если площади фигур равны, то равны и сами фигуры.
2) Площадь трапеции равна произведению суммы оснований на высоту.
3) Если две стороны треугольника равны 4 и 5, а угол между ними равен 30°, то площадь этого треугольника равна 10.
4) Если две смежные стороны параллелограмма равны 4 и 5, а угол между ними равен 30°, то площадь этого параллелограмма равна 10.
Если утверждений несколько, запишите их номера в порядке возрастания.
19. Какие из следующих утверждений верны?
1) Если две стороны треугольника равны 3 и 5, то его третья сторона больше 3.
2) Внешний угол треугольника равен сумме двух его внутренних углов.
3) Если две стороны и угол одного треугольника соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны.
4) Если две стороны треугольника равны 3 и 4, то его третья сторона меньше 7.
20. Какие из следующих утверждений верны?
1) Через любые три точки проходит ровно одна прямая.
2) Сумма смежных углов равна 90 градусов.
3) Если при пересечении двух прямых третьей прямой соответственные углы составляют в сумме 180 градусов, то эти две прямые параллельны.
4) Через любые две точки проходит не более одной прямой.
21. Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.
22. Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.
23. Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит меньший угол.
2) Любой квадрат можно вписать в окружность.
3) Площадь трапеции равна произведению средней линии на высоту.
24. Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
25. Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.
26. Укажите номер верного утверждения.
1) Если в параллелограмме две стороны равны, то такой параллелограмм является ромбом.
2) Если в четырёхугольнике две диагонали равны и перпендикулярны, то такой четырёхугольник — квадрат.
3) Если в ромбе диагонали равны, то такой ромб является квадратом.
4) Углы при меньшем основании трапеции тупые.
Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать
Какие из следующих утверждений верны?
Математика | 5 — 9 классы
Какие из следующих утверждений верны?
1) Около любого правильного многоугольника можно описать не более одной окружности.
2) Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.
3) Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.
4) Около любого ромба можно описать окружность.
1) «Около любого правильного многоугольника можно описать не более одной окружности.
»—верно, около любого правильного многоугольника можно описать окружность, и притом только одну.
2) «Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.
» —верно, треугольник с такими сторонами является прямоугольным, таким образом, центр окружности лежит на гипотенузе.
3) «Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.
» —верно, диагонали квадрата точкой пересечения делятся пополам, таким образом, центром окружности является точка пресечения диагоналей.
4) «Около любого ромба можно описать окружность.
» —неверно, чтобы около четырёхугольника можно было описать окружность, необходимо, чтобы сумма противоположных углов четырёхугольника составляла 180°.
Это верно не для любого ромба.
Видео:Нахождение радиуса описанной окружности около правильного четырехугольникаСкачать
Квадрат описан около окружности радиуса 3 см найти радиус окружности, описанной около квадрата?
Квадрат описан около окружности радиуса 3 см найти радиус окружности, описанной около квадрата.
Видео:Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)Скачать
1)Окружность вписанная в треугольник?
1)Окружность вписанная в треугольник?
Где находится центр такой окружности?
Какой отрезок будет являться её радиусом?
2)Окружность описанная около треугольника?
Где находится центр такой окружности?
Какой отрезок будет являться её радиусом?
3)Окружность описанная около прямоугольного треугольника?
Где находится центр такой окружности?
Чему равен её радиус?
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Какое из следующих утверждений верно?
Какое из следующих утверждений верно?
1) Диагонали ромба равны.
2) Отношение площадей подобных треугольников равно коэффициенту подобия.
3) Серединные перпендикуляры к сторонам треугольника пересекаются в точке, являющейся центром окружности, описанной около треугольника.
Видео:Найти центр и радиус окружностиСкачать
Около квадрата со стороной 5(корень из 2) описана окружность?
Около квадрата со стороной 5(корень из 2) описана окружность.
Найдите сторону шестиугольника, описанного возле этой окружности.
Видео:Ось симметрииСкачать
Отмете верные утверждения 21?
Отмете верные утверждения 21.
1) Около всякого треугольника можно описать не более одной окружности.
2) В любой треугольник можно вписать не менее одной окружности.
3) Центром окружности, описанной около треугольника, является точка пересечения бис —
4) Центром окружности, вписанной в треугольник, является точка пересечения серединных
перпендикуляров к его сторонам.
22. 1) Около любого правильного многоугольника можно описать не более одной окружности.
2) Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, нахо —
дится на стороне этого треугольника.
3) Центром окружности, описанной около квадрата, является точка пересечения его диаго —
4) Около любого ромба можно описать окружность.
23. 1) Окружность имеет бесконечно много центров симметрии.
2) Прямая не имеет осей сим —
3) Правильный пятиугольник имеет пять осей симметрии.
4) Квадрат не имеет центра сим —
24. 1) Правильный шестиугольник имеет шесть осей симметрии.
2) Прямая не имеет осей сим —
3) Центром симметрии ромба является точка пересечения его диагоналей.
4) Равнобедренный треугольник имеет три оси симметрии.
25. 1) Центром симметрии прямоугольника является точка пересечения диагоналей.
2) Центром симметрии ромба является точка пересечения его диагоналей
3) Правильный пятиугольник имеет пять осей симметрии.
4) Центром симметрии равнобедренной трапеции является точка пересечения ее диагона —
Видео:8 класс, 9 урок, Осевая и центральная симметрияСкачать
Сторона правильного треугольника, вписанного в некоторую окружность, равна 4 корня из 3 — ёх?
Сторона правильного треугольника, вписанного в некоторую окружность, равна 4 корня из 3 — ёх.
Найдите сторону правильного четырёхугольника, описанного около этой окружности.
Видео:Осевая и центральная симметрия, 6 классСкачать
ПОМОГИТЕ1?
Окружность описана около треугольника.
Верно ли, что вне точки окружности принадлежат плоскости треугольника?
Видео:Осевая симметрия. 6 класс.Скачать
Вокруг квадрата со стороной 6 см описана окружность?
Вокруг квадрата со стороной 6 см описана окружность.
Найдите : а) Радиус окружности.
Б)Сторону правильного треугольника, описанного около окружности.
Видео:ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Найдите радиус окружности, описанной около равностороннего треугольника, если его сторона равно 15 / корень3?
Найдите радиус окружности, описанной около равностороннего треугольника, если его сторона равно 15 / корень3.
Около квадрата со стороной a описана окружность, а около окружности описан правильный треугольник?
Около квадрата со стороной a описана окружность, а около окружности описан правильный треугольник.
Найдите сторону треугольника.
Найдите радиус окружности, описанной около треугольника АВС, если центр окружности О удален от стороны АВ = 24см на расстояние 9см?
Найдите радиус окружности, описанной около треугольника АВС, если центр окружности О удален от стороны АВ = 24см на расстояние 9см.
Вы перешли к вопросу Какие из следующих утверждений верны?. Он относится к категории Математика, для 5 — 9 классов. Здесь размещен ответ по заданным параметрам. Если этот вариант ответа не полностью вас удовлетворяет, то с помощью автоматического умного поиска можно найти другие вопросы по этой же теме, в категории Математика. В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей.
Т. К. Сказано, что оставшиеся части — полукруги, то вместе они одна окружность. Если они соприкасались с квадратом, при совмещении и наложении на квадрат, окружность станет вписанной в квадрат. Сторона такого квадрата равна диаметру окружности. Р..
2 355 264 : 58 + 1 526 112 : 56 = 67 860.
2 355 264 : 58 + 1 526 112 : 56 = 67860 2355264 : 58 = 40608 1526112 : 56 = 27252 40608 + 27252 = 67860.
1)35 : 4 = 3 2)3 * 4 = 12 (кур) 3)35 — 12 = 23 (цыплят) Ответ : 23 цыплят.
Х + 4х = 35 5х = 35 х = 35 : 5 х = 7 — кур 35 — 7 = 28 — цыпят.
Ноль в каждой 10 и два ноля в 100 То есть 1 * 10 + 2 = 12 нолей.
0, 7061 : 0, 23 = 3, 07 30, 7 — 3, 07 = 27, 63 1, 1 * 27, 63 = 30, 393.
7000000 м кв. 160 м кв. 240 м кв. 285 м кв.
7000000 м кв. 160 м кв. 240 м кв. 285 м кв.
Вообщем, автор даже написать не смог — ну ладно! Славик Денису блин должен отдать, чтобы поровну было. И так, чтобы у них было поровну орехов, Денис должен отдать Славику 9 орехов.