Косоугольная проекция треугольника авс

Тестирование по теме Метод проекций

При правильных ответах прокрутка автоматически передвигает на следующий тест. Если этого не происходит — ответ не правильный. Для того чтобы четко видеть этот момент делайте высоту окна браузера не более одного теста от заголовка до — выбора ответа из списка.

Содержание
  1. Тест №1
  2. Тест №2
  3. Тест №3
  4. Тест №4
  5. Тест №5
  6. Тест №6
  7. Тест №7
  8. Тест №8
  9. Тест №9
  10. Тест №10
  11. Тест №11
  12. Тест №12
  13. Тест №13
  14. Тест №14
  15. Тест №15
  16. Тестирование по теме — Метод проекций — завершено
  17. Способы проецирования
  18. Проецирование точки, прямой, плоскости
  19. Способы проецирования
  20. Центральное проецирование
  21. Параллельное проецирование
  22. Косоугольное проецирование
  23. Ортогональное проецирование
  24. Эпюр Монжа
  25. Проецирование точки
  26. Принадлежность точек четвертям и октантам
  27. Принадлежность точек плоскостям проекций и осям координат
  28. Проецирование прямой
  29. Прямая общего положения
  30. Прямые особого (частного) положения
  31. Следы прямой
  32. Способ прямоугольного треугольника
  33. Принадлежность точки прямой
  34. Взаимное расположение двух прямых
  35. Определение видимости точек и линий
  36. Перпендикулярность прямых
  37. Проецирование плоскости
  38. Способы задания плоскостей
  39. Следы плоскости
  40. Главные линии плоскости
  41. Углы наклона плоскости к плоскостям проекции
  42. Плоскости особого(частного) положения
  43. Принадлежность точки плоскости
  44. Взаимное расположение прямой и плоскости
  45. Взаимное расположение двух плоскостей
  46. Перпендикулярность прямой и плоскости и двух плоскостей
  47. Косоугольная проекция треугольника авс
  48. ПРОЕЦИРУЮЩИЕ ПЛОСКОСТИ И ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ
  49. ПРОЕКЦИИ ТОЧКИ И ПРЯМОЙ, РАСПОЛОЖЕННЫХ НА ПЛОСКОСТИ
  50. ПРОЕКЦИИ ПЛОСКИХ ФИГУР
  51. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ
  52. ПРЯМАЯ, ПРИНАДЛЕЖАЩАЯ ПЛОСКОСТИ
  53. ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПЛОСКОСТЬЮ
  54. ПЕРЕСЕЧЕНИЕ ПЛОСКОСТЕЙ
  55. 📺 Видео

Видео:Построение треугольника в трёх проекцияхСкачать

Построение треугольника в трёх проекциях

Тест №1

Даны изображения фигуры ABC:

Косоугольная проекция треугольника авс Косоугольная проекция треугольника авс Косоугольная проекция треугольника авс Косоугольная проекция треугольника авс
ABCD

Косоугольная проекция треугольника АВС на плоскость проекций H дана на изображении…

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции

Тест №2

Прямая при прямоугольном проецировании проецируется в точку при условии. :

— A. Если эта прямая проходит через центр проецирования

— B. Параллельности этой прямой плоскости проекций

— C. Если эта прямая находится под углом 45° к плоскости проекций

— D. Перпендикулярности этой прямой плоскости проекций

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать

Пересечение двух плоскостей. Плоскости в виде треугольника

Тест №3

Прямая при центральном проецировании проецируется в точку при условии.

— A. Если эта прямая проходит через центр проецирования

— B. Если эта прямая находится под углом 45° к плоскости проекций

— C. Перпендикулярности этой прямой плоскости проекций

— D. Параллельности этой прямой плоскости проекций

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Частное положение точек. Точки принадлежащие к плоскостям проекции.Скачать

Частное положение точек. Точки принадлежащие к плоскостям проекции.

Тест №4

Проецирование называют центральным, если проецирующие лучи …

— A. Не параллельны между собой

— B. Проходят под острым углом к плоскости проекций

— C. Перпендикулярны плоскости проекций

— D. Проходят через одну точку

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронтали

Тест №5

Проецирование называют ортогональным, если проецирующие лучи …

— A. Проходят через одну точку

— B. Проходят под острым углом к плоскости проекций

— C. Не параллельны между собой

— D. Перпендикулярны плоскости проекций

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Угол наклона плоскости общего положения относительно плоскостям проекцииСкачать

Угол наклона плоскости общего положения относительно плоскостям проекции

Тест №6

Плоскость проекций, обозначаемая на чертеже H , называется…

— A. Фронтальной плоскостью проекций

— B. Горизонтальной плоскостью проекций

— C. Профильной плоскостью проекций

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Косоугольная проекцияСкачать

Косоугольная проекция

Тест №7

Проецирование называют ортогональным, если проецирующие лучи …

— A. Проходят через одну точку

— B. Параллельны между собой и перпендикулярны по отношению к плоскости проекций

— C. Параллельны между собой

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЛЬНИКА НА П1/П2 и углы наклона его плоскости к плоскостям проекцийСкачать

ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЛЬНИКА НА П1/П2 и углы наклона его плоскости к плоскостям проекций

Тест №8

Даны изображения фигуры ABC:

Косоугольная проекция треугольника авс Косоугольная проекция треугольника авс Косоугольная проекция треугольника авс
ABC

Косоугольная проекция треугольника АВС на плоскость проекций H дана на изображении…

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Начертательная геометрия. Методы проецированияСкачать

Начертательная геометрия. Методы проецирования

Тест №9

При центральном проецировании сохраняется…

— A. Натуральная величина отрезка прямой

— B. Перпендикулярность отрезков прямых

— C. Принадлежность точки прямой

— D. Параллельность отрезков прямых

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости

Тест №10

Какое из сформулированных предложений отношений принадлежности евклидова пространства означает — необходимы две точки, чтобы провести одну прямую?

— A. Если точка принадлежит прямой, а прямая принадлежит плоскости, то точка принадлежит плоскости.

— B. Три различные точки A, B и C, не принадлежащие одной прямой, принадлежат одной и той же и только одной плоскости.

— C. Если две точки, принадлежащие прямой, принадлежат плоскости то и прямая принадлежит плоскости.

— D. Две различные точки всегда принадлежат одной и той же и только одной прямой или каждой прямой принадлежат,по крайней мере, две точки.

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Достроить проекцию треугольника общего положения. Задачи по начертательной геометрииСкачать

Достроить проекцию треугольника общего положения. Задачи по начертательной геометрии

Тест №11

Преобразование пространственного макета в эпюр осуществляется .

— A. поочередным совмещеним плоскостей W и H с фронтальной плоскостью проекций V. Для совмещения W поворачиваем на 90° вокруг оси z в направлении движения часовой стрелки и H поворачиваем на 90° вокруг оси z в направлении против движения часовой стрелки.

— B. поочередным совмещеним плоскостей H и W с фронтальной плоскостью проекций V. Для совмещения H поворачиваем на 90° вокруг оси x в направлении движения часовой стрелки и W поворачиваем на 90° вокруг оси z в направлении против движения часовой стрелки.

— C. поочередным совмещеним плоскостей W и H с фронтальной плоскостью проекций V. Для совмещения W поворачиваем на 90° вокруг оси z в направлении против движения часовой стрелки и H поворачиваем поворачиваем на 90° вокруг оси z в направлении движения часовой стрелки.

— D. поочередным совмещеним плоскостей H и W с фронтальной плоскостью проекций V. Для совмещения H поворачиваем на 90° вокруг оси x в направлении против движения часовой стрелки и W поворачиваем поворачиваем на 90° вокруг оси z в направлении против движения часовой стрелки.

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Косоугольная фронтальная диметрическая проекцияСкачать

Косоугольная  фронтальная диметрическая проекция

Тест №12

Какой из способов проецирования обладает следующими преимуществами перед другими?: — простота геометрических построений для определения проекций точек; — Возможность при определенных условиях сохранить на проекциях форму и размеры проецируемой фигуры.

— A. Прямоугольное проецирование

— B. Центральное проецирование

— C. Косоугольное проецирование

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Изометрическая проекция треугольникаСкачать

Изометрическая проекция треугольника

Тест №13

Какому из инвариантных свойств параллельного проецирования соответствует запись — (∀A, m)[A ∈ m ⇒ A α ∈ m α ]

— A. Проекция точки есть точка.

— B. Проекция прямой на плоскость есть прямая.

— C. Если в пространстве точка принадлежит (инцидентна) линии, то проекция этой точки принадлежит проекции линии.

— D. Проекции взаимно параллельных прямых таrже взаимно параллельны, а отношение отрезков таких прямых равно отношению их параллельных проекций.

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Лекция №2. Аксонометрические проекции. Виды аксонометрии. Стандартные аксонометрические проекции.Скачать

Лекция №2. Аксонометрические проекции. Виды аксонометрии. Стандартные аксонометрические проекции.

Тест №14

Какому из инвариантных свойств параллельного проецирования соответствует запись — (Ф → Ф1)∧(Ф1 ║ Ф) ⇒ Ф α ≅ (Ф α )1

— A. Плоская фигура, параллельная плоскости проекции, проецируется на эту плоскость в конгруентную фигуру.

— B. Параллельный перенос оригинала или плоскости проекции не изменяет вида и размеров проекции оригинала.

— C. Плоский многоугольник в общем случае проецируется в многоугольник с тем же числом вершин.

— D. Точка пересечения проекций пересекающихся прямых является проекцией точки пересечения этих прямых.

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Проецирование точки на 3 плоскости проекцийСкачать

Проецирование точки на 3 плоскости проекций

Тест №15

Для ортогонального проецирования справедлива следующая теорема: для того чтобы прямой угол проецировался ортогонально без искажения, необходимо и достаточно, чтобы, по крайней мере, одна его сторона была параллельна плоскости проекции, а вторая сторона не перпендикулярна к этой плоскости. Какая из ниже приведенных записей ей соответствует?

— B. (K α = a α ∩ b α ) = (K → (P α )α) → K α )(K = a ∩ b)

— C. (∀A, m)[A ∈ m ⇒ A α ∈ m α ]

Верный ответ укажите выбором соответствующей буквы из списка:

Видео:Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигурыСкачать

Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигуры

Тестирование по теме — Метод проекций — завершено

Примерная система оценки знаний может быть следующей. Ваша оценка: — 5 баллов (отлично), если вы ответили без ошибок; — 4 балла (хорошо), если вы допустили одну ошибку; — 3 балла (удовлетворительно) если вы допустили две ошибки.

Видео:Лекция 1. Точка на прямой. Метод прямоугольного треугольникаСкачать

Лекция 1. Точка на прямой. Метод прямоугольного треугольника

Способы проецирования

Содержание:

Система обозначений

С целью отделения групп геометрических объектов введены такие символические обозначения:

  • точки обозначаются большими буквами латинского алфавита А, В, С, . или натуральными числами Косоугольная проекция треугольника авс…, в том числе начало отсчёта О,основа перпендикуляра N; точки пересечения линии с линией, плоскостью, поверхностью K, M, N; следы прямой H, F, Р;узловые и вспомогательные точкиКосоугольная проекция треугольника авс…;
  • невидимые точки по необходимости обозначаются в круглых скобках: (А), (Косоугольная проекция треугольника авс) и т.д.;
  • отрезки прямых и дуги кривых линий складываются из комбинации двух больших букв, которые обозначают начало и конец: АВ, ВС, DE и т.д.;
  • прямые и кривые линии, лучи обозначаются маленькими буквами латинского алфавита a, b,c, …, в том числе прямые уровня h, f, p; проецирующие прямые u, v, w;проецирующие оси вращения i, j, k;прямая, перпендикулярная другой прямой или плоскости,– п; оси прямоугольной системы координат х, у, z; оси вспомогательной системы координат s; оси натурального трёхгранника τ, n, b;
  • углы между прямыми, прямой и плоскостью, двумя плоскостями обозначаются маленькими греческими буквами α, β, γ, …;
  • плоскости и их отсеки, кривые поверхности и пространственные тела обозначаются большими буквами греческого алфавита Σ, Φ, Ω, …, в том числе плоскости проекций П,плоскости проекций прямоугольной системы координатКосоугольная проекция треугольника авсвспомогательные плоскости проекций, перпендикулярные к одной из основных,Косоугольная проекция треугольника авсплоскости проекций при аксонометрическом и косоугольном проецировании П /;
  • следы плоскости Σ обозначаются Косоугольная проекция треугольника авс
  • – проекции геометрического объекта на плоскости проекций обозначаются нижним или верхним индексом: Косоугольная проекция треугольника авсили Косоугольная проекция треугольника авс
  • элемент множества одноимённых геометрических объектов обозначается верхним индексом в круглых скобках: Косоугольная проекция треугольника авс

Символы латинского и греческого алфавитов приведены в приложении А

Косоугольная проекция треугольника авс

Видео:ЗАДАЧИ ПО ОСНОВАМ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ. МЕТОДЫ ПРОЕЦИРОВАНИЯ И ЭПЮРЫ ТОЧЕК. №1Скачать

ЗАДАЧИ ПО ОСНОВАМ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ. МЕТОДЫ ПРОЕЦИРОВАНИЯ И ЭПЮРЫ ТОЧЕК. №1

Проецирование точки, прямой, плоскости

Проекция точки определяется как пересечение плоскости (гиперплоскости), содержащей эту точку и параллельную плоскости, задающей проекцию. В случае, когда плоскость (гиперплоскость), задающая проекцию, ортогональна прямой, мы получаем ортогональную проекцию (это может быть её альтернативным определением).

Способы проецирования

Известны два метода проецирования: центральное и параллельное.

Проецирование (лат. Projicio – бросаю вперёд) – процесс получения изображения предмета (пространственного объекта) на какой-либо поверхности с помощью световых или зрительных лучей (лучей, условно соединяющих глаз наблюдателя с какой-либо точкой пространственного объекта), которые называются проецирующими.

Центральное проецирование

Для изображения геометрических объектов на плоскости применяют процедуру проецирования, которая состоит в проведении через точку А луча l и дальнейшем определении точки A1 его пересечения с плоскостью проецирования П1 (рис. 1.1 а). Полученная точка А1 называется проекцией точки А на плоскость П1.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсЦентральное проецирование

В центральном проецировании лучи, пронизывающие точки тела, «выходят» из одной точки S – центра проецирования (рис. 1.1 б). Разновидностями центрального проецирования являются угловая (рис. 1.2 а) и фронтальная (рис. 1.2 б) перспективы.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсРазновидности перспективы

Центральное проецирование характеризуется положением центра проецирования

Центральная проекция предмета схожа с изображением, которое воспринимает глаз человека, а также с изображением, полученным посредством фотографии. Этот способ проецирования является наиболее наглядным (способствует зрительному восприятию предметов), но наиболее сложным в своей реализации. Он применяется преимущественно в живописи, строительстве и архитектуре.

Параллельное проецирование

Косоугольное проецирование

Параллельное проецирование можно рассматривать как отдельный случай центрального проецирования, для которого центр S бесконечно удалён от плоскости П1. В этом случае лучи, пронизывающие каждую точку тела, взаимно параллельны (рис. 1.3).

В отличие от центрального, параллельное проецирование характеризуется ориентацией лучей относительно плоскости проекций.

В случае, когда лучи не перпендикулярны к плоскости П1, проецирование называется косоугольным (рис. 1.3).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсКосоугольное проецирование

Косоугольное проецирование используется преимущественно для решения специальных задач на определение точек и линий пересечения геометрических фигур. При этом, как правило, плоскость проекции занимает особое положение относительно системы трёх взаимно перпендикулярных плоскостей (см. п. 2.5).

Ортогональное проецирование

Ортогональное проецирование является отдельным случаем параллельного проецирования, в котором лучи перпендикулярны плоскости проекций (рис. 1.4).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсОртогональное проецирование

Метод ортогонального проецирования положенный в основу построения конструкторской документации, а именно сборочных и рабочих чертежей и эскизов в машиностроении.

Основные свойства ортогонального проецирования будут рассмотрены по мере преподавания материала.

Эпюр Монжа

Эпюр Монжа (от франц. epure – чертёж) – чертёж, в котором пространственная фигура изображена с использованием проецирования на систему двух или трёх взаимно перпендикулярных площадей П1, П2, П3 с дальнейшим условным совмещением последних в одну плоскость (рис. 1.5 а). П1, П2, П3горизонтальная, фронтальная и профильная плоскости проекций.

Чертёж, построенный методом проекций, называется проецирующим, или комплексным чертежом. На рис. 1.5 б построен комплексный чертёж точки А, который складывается из трёх проекций последней: А1 – горизонтальная проекция; А2 – фронтальная проекция; А3 – профильная проекция точки А.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПостроение комплексного чертежа точки

Линии, которые проходят через пары проекций А1А2, А1А3, А2А3, называются линиями проекционной связи. Они перпендикулярны или параллельны координатным осям х, y, z.

На комплексном чертеже ось у дублируется. Это приводит к тому, что одну из проекций точки можно обозначить по двум другим, как это показано стрелками на рис. 1.5 б.

Проецирование точки

Центральное проецирование заключается в проведении через каждую точку ( А, В, С ,…) изображаемого объекта и определённым образом выбранный центр проецирования ( S ) прямой линии ( SA , SB , >… — проецирующего луча ).

Принадлежность точек четвертям и октантам

Пространство условно можно разделить с помощью плоскостей проекций П1, П2 на четыре части – четверти (рис. 1.6 а), а с помощью плоскостей П1, П2, П3 (рис. 1.6 б) – на восемь частей – октантов (от греческого οκτώ – восемь).

Каждая из проекций точки А (рис. 1.5 б) определяется парой координат: А1(x,y), А2(x,z), А3(y,z). Знак «+» или «–» при числовом значении x, y, z позволяет сделать вывод про принадлежность точки А той или другой четверти, октанту (табл. 1.1 – 1.2). Примеры комплексных чертежей точек, которые принадлежат разным четвертям и октантам, приведены на рис. 1.7.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсЧетверти (а) и октанты (б).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПринадлежность точек четвертям и октантам

Принадлежность точек плоскостям проекций и осям координат

Координаты точки иногда называют так: х – ширина; у – глубина; z – высота. В случае, когда высота z точки равна нулю, точка принадлежит плоскости П1 (рис. 1.8, точка А). Если глубина у точки равна нулю, точка принадлежит плоскости П2 (рис. 1.8, точка В). В случае нулевой ширины х, точка принадлежит плоскости П3 (рис. 1.8, точка С).

Если две координаты точки равны нулю, точка принадлежит оси, которая отвечает за третью (не нулевую) координату. Например, точка, которая имеет координаты (Косоугольная проекция треугольника авс), принадлежит оси у, поскольку у ≠ 0, х = z = 0.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПринадлежность точек плоскостям проекций.

Проецирование прямой

Проецирующие прямыепрямые перпендикулярные одной из плоскостей проекций. Проекцией проецирующей прямой на плоскость проекций, к которой она перпендикулярна, является точка (след прямой).

Прямая общего положения

Прямую l в пространстве можно задать двумя точками А и В, которые ей принадлежат (рис. 1.9 а). Проекцией прямой на любую плоскость проекций является прямая (рис. 1.9) или точка (см. п. 1.4.2, рис. 1.11).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПрямая общего положения

Прямая, не параллельная и не перпендикулярная ни одной из плоскостей проекций, называется прямой общего положения.

Прямые особого (частного) положения

Прямые, параллельные или перпендикулярные к плоскостям проекций, называются прямыми особого(частного) положения. Их детальное рассмотрение обусловлено тем, что эти линии используются для решения большинства задач начертательной геометрии.

Прямые особого положения подразделяются на два вида:

а) прямая уровня – прямая, параллельная только одной из плоскостей проекций:

1) горизонталь h – прямая, параллельная П1 (рис. 1.10 а);

2) фронталь f – прямая, параллельная П2 (рис. 1.10 б);

3) профильная прямая уровня p – прямая, параллельная П3 (рис. 1.10 в);

б) проецирующая прямая – прямая, перпендикулярная плоскости проекций:

1) горизонтально- проецирующая прямая u – прямая, перпендикулярная П1 (рис. 1.11 а);

2) фронтально-проецирующая пряма v – прямая, перпендикулярная П2 (рис. 1.11 б);

3) профильно-проецирующая пряма w – прямая, перпендикулярная П3 (рис. 1.11 в)

Длина отрезка прямой уровня h, f, p, соответственно на плоскостях проекций П1, П2, П3 является действительной длиной размещённого в пространстве отрезка. Таким образом, прямая уровня проецируется на одну из плоскостей проекций в натуральную величину (аббревиатура НВ).

Углы наклона прямой уровня к плоскостям проекций можно определять как углы наклона его проекций к осям координат (рис. 1.10, табл. 1.3). Например, угол β наклона горизонтали h к П2 обозначается как угол между проекцией h1 и осью х.

Отрезки проецирующих прямых проецируются на одну из плоскостей проекций в точку, а на две другие – в натуральную величину (рис. 1.11).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПрямые уровня

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПроецирующие прямые

Следы прямой

Точки пересечения прямой с плоскостями проекций называются следами. Прямая общего положения имеет три следа – горизонтальный Н, фронтальный F, профильный Р (рис. 1.12).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСледы прямых общего положения

Способы определения следов прямой общего положения:

а) для определения горизонтального следа Н прямой l необходимо продолжить фронтальную проекцию l2 до пересечения с осью х (эта точка является фронтальной проекцией Н2 горизонтального следа) и провести вертикальную линию проекционной связи до пересечения с продолжением горизонтальной проекции l1. Полученная точка является горизонтальным следом Н прямой l и совпадает с его горизонтальной проекцией Н1 (рис. 1.13 а – б);

б) для определения фронтального следа F прямой l необходимо продолжить горизонтальную проекцию l1 до пересечения с осью х (эта точка является горизонтальной проекцией F1 фронтального следа) и провести вертикальную линию проекционной связи до пересечения с продолжением фронтальной проекции l2. Полученная точка является фронтальным следом F прямой l и совпадает с его фронтальной проекцией F2 (рис. 1.13 а);

в) для определения профильного следа Р прямой l необходимо продолжить фронтальную проекцию l2 до пересечения с осью z (эта точка является фронтальной проекцией Р2 профильного следа) и провести горизонтальную линию проекционной связи до пересечения с продолжением профильной проекции l3. Полученная точка является профильным следом Р прямой l и совпадает с его профильной проекцией Р3 (рис. 1.13 б).

Прямая уровня имеет только два следа, которые не принадлежат той плоскости, которой прямая параллельна (рис. 1.14)

. Проецирующая прямая имеет только один след, который совпадает с той проекцией прямой, которая является точкой (рис. 1.15).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсОпределение следов прямой

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСледы прямых уровня

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСледы проецирующих прямых

Способ прямоугольного треугольника

Длины проекций А1В1, А2В2, А3В3 отрезка АВ прямой общего положения всегда меньше, чем натуральная величина этого отрезка. Поэтому возникает проблема определения натуральной величины отрезка по известным его проекциям. Эта задача решается с помощью способа прямоугольного треугольника (рис. 1.16), который позволяет определять. в том числе, углы α, β, γ наклона отрезка к плоскостям проекций П1, П2, П3 соответственно.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСпособ прямоугольного треугольника

Суть способа прямоугольного треугольника:

а) для определения на плоскости П1 натуральной величины отрезка АВ необходимо определить разность ∆z высот точек А, В и отложить отрезок Косоугольная проекция треугольника авсдлиной ∆z перпендикулярно к горизонтальной проекции А1В1. Длина гипотенузы Косоугольная проекция треугольника авспрямоугольного треугольника Косоугольная проекция треугольника авсявляется натуральной величиной отрезка АВ. Угол между горизонтальной проекцией А1В1 отрезка и его натуральной величиной Косоугольная проекция треугольника авсравен углу α наклона отрезка АВ к плоскости П1;

б) для определения на плоскости П2 натуральной величины отрезка АВ необходимо определить разность ∆у глубин точек А, В и отложить отрезок Косоугольная проекция треугольника авсдлиной ∆у перпендикулярно фронтальной проекции А2В2. Длина гипотенузы Косоугольная проекция треугольника авспрямоугольного треугольника Косоугольная проекция треугольника авсявляется натуральной величиной отрезка АВ. Угол между фронтальной проекцией А2В2 отрезка и его натуральной величиной Косоугольная проекция треугольника авсравен углу β наклона отрезка АВ к плоскости П2;

в) для определения на плоскости П3 натуральной величины отрезка АВ необходимо определить разность ∆х ширины точек А, В и отложить отрезок Косоугольная проекция треугольника авсдлиной ∆х перпендикулярно профильной проекции А3В3. Длина гипотенузы Косоугольная проекция треугольника авспрямоугольного треугольника Косоугольная проекция треугольника авсявляется натуральной величиной отрезка АВ. Угол между профильной проекцией А3В3 отрезка и его натуральной величиной Косоугольная проекция треугольника авсравен углу γ наклона отрезка АВ к плоскости П3.

Принадлежность точки прямой

В начертательной геометрии принадлежность точки А прямой l определяется с помощью проекций этих объектов.

Условие принадлежности точки прямой Точка А принадлежит прямой l, если три её ортогональные проекции A1, A2, A3 принадлежат соответствующим проекциям l1, l2, l3 прямой (рис. 1.17 а).

На рис. 1.17 б показаны три проекции точки А, которая принадлежит прямой l. На рис. 1.18 а точка В не принадлежит прямой Косоугольная проекция треугольника авс, поскольку две её проекции В1, В3 не принадлежат соответствующим проекциям Косоугольная проекция треугольника авспрямой. На рис. 1.18 б точка С не принадлежит прямой р профильного уровня, поскольку одна из её проекций С3 не принадлежит проекции Косоугольная проекция треугольника авспрямой.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПринадлежность точки прямой

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсНепринадлежность точки прямой

Взаимное расположение двух прямых

Две прямые в пространстве могут пересекаться (рис. 1.19 а), быть параллельными (рис. 1.19 б) или скрещивающимися .

Условие пересечения двух прямых

Две прямые l, m пересекаются в точке А, если три ортогональные проекции А1, А2, А3 являются точками пересечения соответствующих проекций прямых (рис. 1.20 а).

Условие параллельности двух прямых

Две прямые l, m параллельны, если три их ортогональные проекции попарно параллельны (рис. 1.20 б).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПересекающиеся и параллельные прямые

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсУсловия пересечения и параллельности двух прямых

В случае, когда прямые не параллельны и не пересекаются, они являются скрещивающимися. их взаимное размещение рассмотрено в п. 1.4.7.3.

Особый случай прямых, которые пересекаются под прямым углом, рассмотрен в п. 1.4.8.

Определение видимости точек и линий

Определение видимости — это определение точек предмета, лежащих на одном луче проецирования (называемых конкурирующими), и обозначение на чертеже только тех из них, которые расположены по этому лучу ближе к наблюдателю.

Видимость внешнего контура

При решении задач начертательной геометрии необходимо учитывать видимость геометрических объектов (точек и линий). Среди совокупности всех объектов необходимо выделять такие два вида (рис. 1.21):

а)внешний контур – совокупность линий, которые находятся за границами всех других объектов на данной плоскости проекций;

б) сходящиеся линии– совокупность линий, пересекающихся в одной точке(.рёбра многогранника)

Правило определения видимости внешнего контура

Внешний контур на данной плоскости проекций всегда является видимым (рис. 1.21).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсВидимость точек и линий

Видимость сходящихся линий

Сходящиеся линии на разных плоскостях проекций могут иметь разную видимость.

Правило определения видимости сходящихся линий

Видимость сходящихся линий совпадает с видимостью точки их пересечения (рис. 1.22):

а) видимы на П1,если точка пересечения имеет наибольшую высоту;

б) видимы на П2, если точка пересечения имеет наибольшую глубину;

в) видимы на П3, если точка пересечения имеет наибольшую ширину.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсВидимость сходящихся линий (рёбер многогранника)

На рис. 1.22 четыре сходящиеся линии на горизонтальной проекции являются видимыми, поскольку высота z точки K их пересечения наибольшая. Три сходящиеся линии на фронтальной и профильной проекциях невидимы, поскольку точки М, N их пересечения являются невидимыми.

Метод конкурирующих точек

Метод конкурирующих точек позволяет определить взаимное расположение точек двух скрещивающихся прямых (рис. 1.23).

Суть метода конкурирующих точек

а) для определения того, какая из двух скрещивающихся прямых l, m глубже, на них выбираются точки 1, 2, размещённые на общей фронтально-проецирующей прямой v. На горизонтальной плоскости проекций находятся глубины у выбранных точек и делается вывод о том, какая линия впереди, какая сзади;

б) для определения того, какая из двух скрещивающихся прямых l, m выше, на них выбираются точки 3, 4, размещённые на общей горизонтально-проецирующей прямой Косоугольная проекция треугольника авс. На фронтальной плоскости проекций находятся высоты z выбранных точек и делается вывод о том, какая линия выше, какая ниже;

в) для определения того ,какая из двух скрещивающихся прямых l, m размещена слева, а какая справа, на них выбираются точки 5, 6 на общей профильно-проецирующей прямой w. На фронтальной плоскости проекций находятся широты х выбранных точек и делается вывод о том, какая линия слева, какая справа.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсМетод конкурирующих точек

На рис. 1.23 точка 2 находится глубже, поэтому её фронтальная проекция Косоугольная проекция треугольника авсявляется невидимой. В дальнейшем невидимые точки будут обозначаться в круглых скобках, например, Косоугольная проекция треугольника авс. Проекция Косоугольная проекция треугольника австакже является невидимой, поскольку точка 4 размещена ниже точки 3. Точка 6 находится слева от точки 5, поэтому проекция Косоугольная проекция треугольника авсявляется невидимой.

Метод конкурирующих точек применяется, например, для определения видимости рёбер многогранников (рис. 1.24):

а) на горизонтальной проекции из пары скрещивающихся прямых АВ, СD первая является невидимой, поскольку из фронтальной проекции видно, что А2В2 находится ниже, чем C2D2;

б) на фронтальной проекции из пары скрещивающихся прямых АС, BD первая является невидимой, поскольку из горизонтальной проекции видно, что А1С1 находится сзади от В1D1;

в) на профильной проекции из пары скрещивающихся прямых АD, ВС вторая является невидимой, поскольку из фронтальной проекции видно, что В2С2 находится справа от А2D2.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсВидимость скрещивающихся прямых

Перпендикулярность прямых

Ортогональные проекции двух прямых общего положения, которые пересекаются под прямым углом, в общем случае не являются перпендикулярными. Другими словами, прямой угол при его проецировании на плоскости проекций П1, П2, П3 искажается (рис. 1.25).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПроецирование прямого угла

Существуют отдельные случаи, когда прямой угол проецируется в натуральную величину. Эти случаи описываются теоремой о проецировании прямого угла.

Теорема о проецировании прямого угла

Прямой угол проецируется в натуральную величину на ту плоскость проекций, которой параллельна одна из его сторон (рис. 1.26 а).

Как следствие теоремы, прямой угол между прямой общего положения l и горизонталью h проецируется в натуральную величину на плоскость проекций П1; между l и фронталью f – на плоскость П2 (рис. 1.26 б).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсТеорема проецирования прямого угла

Способ построения прямой общего положения, перпендикулярной заданной, описан в пп. 1.6.1.1 – 1.6.1.2.

Проецирование плоскости

Проецирование — это построение изображения геометрического объекта на плоскости путем проведения через все его точки воображаемых проецирующих лучей до пересечения их с плоскостью, называемой плоскостью проекций.

Способы задания плоскостей

Плоскость Σ в пространстве можно задать шестью способами (рис. 1.27):

а) тремя точками А, В, С, которые не принадлежат одной прямой;

б) прямой l и точкой D, которая её не принадлежит;

в) двумя параллельными прямыми а и b;

г) двумя пересекающимися прямыми c, d;

д) плоской фигурой Ф (треугольник, окружность и т.д.);

е) следами Косоугольная проекция треугольника авс– линиями пересечения плоскости с плоскостями проекций (см. п. 1.5.2).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСпособы задания плоскостей

Разнообразие способов задания плоскостей обусловливает существование в начертательной геометрии большого количества способов решения задач.

Следы плоскости

Следами Косоугольная проекция треугольника авсплоскости называются линии её пересечения с плоскостями проекций П1, П2, П3. Каждый след может быть построен по двум точкам – соответствующим следам двух прямых этой плоскости (рис. 1.28).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСледы плоскости общего положения

Правило определения следов плоскости:

а) для определения горизонтального следа Косоугольная проекция треугольника авсплоскости Σ необходимо выбрать на ней две прямые l, m и определить горизонтальные следы Косоугольная проекция треугольника авсэтих прямых (см. п. 1.4.3). Горизонтальный след Косоугольная проекция треугольника авсплоскости Σ проводится через точки Косоугольная проекция треугольника авсдо пересечения с осями х, у. Полученные точки Косоугольная проекция треугольника авсявляются точками пересечения плоскости Σ с осями координат х, у;

б) для определения фронтального следа Косоугольная проекция треугольника авсплоскости Σ достаточно определить фронтальный след F одной из прямых (например, l). Фронтальный след Косоугольная проекция треугольника авсплоскости Σ проводится через точки Косоугольная проекция треугольника авсF до пересечения осью z. Полученная точка Косоугольная проекция треугольника авсявляется точкой пересечения плоскости Σ с осью z;

в) профильный след Косоугольная проекция треугольника авсплоскости Σ проходит через точки Косоугольная проекция треугольника авсСовокупность параметров Косоугольная проекция треугольника авсназывается определителем плоскости.

Свойства следов плоскости:

а) каждая пара следов плоскости общего положения пересекается на оси координат: Косоугольная проекция треугольника авс– на оси х; Косоугольная проекция треугольника авс– на оси z; Косоугольная проекция треугольника авс– на оси у. Это свойство даёт возможность определять один из следов плоскости по двум другим;

б) следы плоскости являются отдельным случаем линий уровня, которые принадлежат плоскостям проекций: горизонтальный след является горизонталью с нулевой высотой; фронтальный след является фронталью с нулевой глубиной; профильный след является прямой профильного уровня с нулевой шириной;

в) проекция следа плоскости на одну из плоскостей проекций является натуральной величиной (НВ), а на две другие – совпадает с осями координат (табл. 1.4); Обозначенные свойства позволяют использовать следы плоскости для быстрого решения задач начертательной геометрии.

Косоугольная проекция треугольника авс

Главные линии плоскости

Главными линиями плоскости (рис. 1.29) являются:

а) прямые уровня: горизонталь h, фронталь f , профильная прямая уровня p. Линиями уровня плоскости можно выбирать её следы Косоугольная проекция треугольника авс

б) линии наибольшего наклона – прямые линии, которые образуют наибольший угол с плоскостями проекций.

Свойства линий наибольшего наклона:

а) линия Косоугольная проекция треугольника авснаибольшего наклона к П1 перпендикулярна любой горизонтали h плоскости; б) линия Косоугольная проекция треугольника авснаибольшего наклона к П2 перпендикулярна любой фронтали f плоскости;

в) линия Косоугольная проекция треугольника авснаибольшего наклона к П3 перпендикулярна любой прямой профильного уровня р плоскости.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсГлавные линии плоскости

Углы наклона плоскости к плоскостям проекции

Углы α, β, γ наклона плоскости Σ к плоскостям проекций П1, П2, П3 определяются как углы наклона линий наибольшего наклона Косоугольная проекция треугольника авск соответствующим плоскостям проекций (рис. 1.29). Например, угол β между Косоугольная проекция треугольника авси П2 является углом наклона плоскости Σ к П2.

Натуральная величина углов наклона плоскости Σ к плоскостям проекций П1, П2, П3 определяется способами преобразования комплексного чертежа (см. раздел 2), кроме случаев, обозначенных в п. 1.5.5.

Плоскости особого(частного) положения

В начертательной геометрии различают такие виды плоскостей:

а) плоскость общего положения – плоскость, не параллельная и не перпендикулярная ни одной из плоскостей проекций (рис. 1.27 – 1.29);

б) плоскость уровня – плоскость, параллельная плоскости проекций:

1) горизонтальная плоскость уровня – плоскость, параллельная П1 (рис. 1.30 а);

2) фронтальная плоскость уровня –плоскость, параллельная П2 (рис. 1.30 б);

3) профильная плоскость уровня–плоскость, параллельная П3 (рис. 1.30 в);

в) проецирующая плоскость – плоскость, перпендикулярная только одной плоскости проекций:

1) горизонтальнопроецирующая плоскость – плоскость, перпендикулярная П1 (рис. 1.31 а);

2) фронтальнопроецирующая плоскость – плоскость, перпендикулярная П2 (рис. 1.31 б);

3) профильно-проецирующая плоскость – плоскость, перпендикулярная П3 (рис. 1.31 в).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПлоскости уровня

Свойства плоскостей особого(частного) положения:

а) горизонтальная плоскость уровня не имеет горизонтального следа, а её фронтальный и профильный следы перпендикулярны оси z;

б) фронтальная плоскость уровня не имеет фронтального следа, а её горизонтальный и профильный следы перпендикулярны оси y;

в) профильная плоскость уровня не имеет профильного следа, а её горизонтальный и фронтальный следы перпендикулярны оси х;

г) фронтальный и профильный следы горизонтально-проецирующей плоскости параллельны оси z;

д) горизонтальный и профильный следы фронтально-проецирующей плоскости параллельны оси у;

е) горизонтальный и фронтальный следи профильно-проецирующей плоскости параллельны оси х;

ж) углы α, β, γ наклона проецирующих плоскостей к плоскостям проекций П1, П2, П3 являются углами наклона следов к осям координат (рис. 1.31).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПроецирующие плоскости

Плоскости особого положения широко используются при решении задач на пересечение геометрических объектов (см. п. 1.5.8, рис. 1.42 – 1.44; раздел 4; п. 6.4, рис. 6.18, 6.21 – 6.23).

Принадлежность точки плоскости

Точка А принадлежит плоскости Σ, если она принадлежит любой линии l (например, прямой) этой плоскости (рис. 1.32).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПринадлежность точки плоскости

Для определения неизвестных проекций точки А, принадлежащей плоскости Σ, по одной известной проекции (например, А2) применяются такие способы:

а) способ прямой общего положения: через известную проекцию А2 точки проводится фронтальная проекция l2 прямой общего положения; вводятся вспомогательные точки Косоугольная проекция треугольника авспрямой и определяются их горизонтальные и профильные проекции, с помощью которых строятся проекции l1, l3 прямой l. По условию принадлежности точки А прямой l (см. п. 1.4.5, рис. 1.17) определяются проекции А1, А3 (рис. 1.33);

б) способ прямой особого(частного) положения:

1) способ горизонтали: через известную проекцию А2 точки проводится фронтальная проекция h2 горизонтали (параллельно оси х); вводится вспомогательная точка 1 и определяется её горизонтальная проекция, через которую проводится h1 (параллельно горизонтальному следу Косоугольная проекция треугольника авсплоскости). С помощью вертикальной линии проекционной связи определяется проекция А1. Проекция А3 является точкой пересечения линий проекционной связи, проведенных с А1, А2 (рис. 1.34 а);

2) способ фронтали: через известную проекцию А2 точки проводится фронтальная проекция f2 фронтали (параллельно Косоугольная проекция треугольника авс). Вводиться вспомогательная точка 2 и определяется её горизонтальная проекция, через которую проводится f1 (параллельно оси х). С помощью вертикальной линии проекционной связи определяется проекция А1; Проекция А3 является точкой пересечения линий проекционной связи, проведенных с А1, А2 (рис. 1.34 б);

3) способ профильной прямой уровня: через известную проекцию А2 точки проводится фронтальная проекция р2 профильной прямой уровня (параллельно оси z). Вводится вспомогательная точка 3 и определяется её профильная проекция, через которую проводится р3 (параллельно Косоугольная проекция треугольника авс). С помощью горизонтальной линии проекционной связи определяется проекция А3. Проекция А1 является точкой пересечения линий проекционной связи, проведенных из проекций А2, А3 (рис. 1.34 в).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСпособ прямой общего положения

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСпособ прямых особого положения

Взаимное расположение прямой и плоскости

Прямая l в пространстве может принадлежать плоскости Σ, быть параллельною ей или пересекать её (рис. 1.35 а – в).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсВзаимное расположение прямой и плоскости

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПринадлежность прямой плоскости

Условие принадлежности прямой плоскости

Прямая l принадлежит плоскости Σ, если две ей точки А, В принадлежат этой плоскости (рис. 1.35 а).

Определение неизвестных проекций прямой l, которая принадлежит плоскости Σ, состоит в определении неизвестных проекций двух точек А, В этой прямой способами, описанными в п. 1.5.6. Например (рис. 1.36), если известна фронтальная проекция отрезка АВ, который принадлежит плоскости Σ, заданной параллельными прямыми а, b, проводится фронтальная проекция прямой l общего положения через А2, В2. С помощью двух вспомогательных точек 1, 2, принадлежащих прямым а, b плоскости, и вертикальных линий проекционной связи определяются горизонтальные проекции А1В1 точек прямой l.

На рис. 1.36 оси координат не обозначены, поскольку для решения многих позиционных задач начертательной геометрии необходимости в их построении нет.

Условие параллельности прямой и плоскости

Прямая l параллельна плоскости Σ, если она параллельна любой прямой m этой плоскости (рис. 1.35 б).

Способ построения прямой, параллельной плоскости

Для построения проекций прямой l, проходящей через точку D параллельно плоскости Σ, необходимо построить проекции любой прямой m, принадлежащей плоскости. Проекции прямой l будут проходить через проекции точки D параллельно соответствующим проекциям прямой m, (рис. 1.37). Поскольку существует бесконечное число способов проведения прямой m в плоскости Σ, задача о параллельности прямой и плоскости имеет бесконечное множество решений.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПараллельность прямой и плоскости

Если прямая l не принадлежит и не параллельна плоскости Σ, они пересекаются в точке K (рис. 1.35 в), которая определяется способами вспомогательной секущей плоскости , замены плоскостей проекций (см. п. 2.1.8, 2.2.6), косоугольного проецирования (см. п. 2.5).

Суть способа вспомогательной секущей плоскости при определении точки пересечения прямой и плоскости

Для определения точки K пересечения прямой l и плоскости Σ (заданной, например, треугольником АВС) необходимо провести через прямую l вспомогательную плоскость особого положения (например, горизонтально-проецирующую) и определить линию m пересечения этой плоскости с заданной плоскостью . Искомая точка K является точкой пересечения прямых l, m (рис. 1.38). Задача о нахождении точки пересечения прямой и плоскости дополняется определением видимости частей прямой l методом конкурирующих точек (см. п. 1.4.7.3).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСпособ вспомогательной секущей плоскости

В начертательной геометрии вспомогательные секущие плоскости особого положения обозначаются одним из следов (например, плоскость Ω на рис. 1.38 показана горизонтальным следом Ω1).

Взаимное расположение двух плоскостей

Две плоскости в пространстве могут совпадать, быть параллельными или пересекаться по линии (рис. 1.39).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсВзаимное расположение двух плоскостей

Условие совпадения двух плоскостей

Плоскость принадлежит плоскости Σ, если они имеют три общие точки А, В, С (рис. 1.39 а). Определение неизвестных проекций плоскости Ω, ,которая принадлежит плоскости Σ, состоит в определении неизвестных проекций трёх точек А, В, С плоскости способами, описанными в п. 1.5.6 – 1.5.7. Например (рис. 1.40), для нахождения неизвестной горизонтальной проекции треугольника АВС, принадлежащего плоскости Σ, применены методы прямой l общего положения и горизонтали h.

Условие параллельности двух плоскостей

Плоскость параллельна плоскости Σ, если пара непараллельных прямых плоскости параллельна паре непараллельных прямых плоскости Σ (рис. 1.39 б).

Способ построения параллельных плоскостей

Для построения проекций плоскости Ω, проходящей через точку D параллельно плоскости Σ (заданной, например, параллельными прямыми a, b), необходимо построить проекции двух непараллельных прямых с, d, принадлежащих плоскости Σ. Искомая плоскость буде задана двумя прямыми l, m, проекции которых проходят через соответствующие проекции точки D параллельно проекциям вспомогательных прямых с, d (рис. 1.41).

Если плоскости Ω, Σ не совпадают и не параллельны, то они пересекаются по прямой линии (рис. 1.39 в).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСовпадение плоскостей

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПараллельность плоскостей

Линия пересечения двух плоскостей определяется такими способами:

а) способ вспомогательных секущих плоскостей (рис. 1.42);

б) способ плоскостей-посредников особого(частного) положения (рис. 1.43 – 1.44);

в) способ следов (рис. 1.45);

г) способы преобразования комплексного чертежа (см. п. 2.1.8, 2.3.5);

д) способ косоугольного проецирования (см. п. 2.5).

Суть способа вспомогательных секущих плоскостей при определении линии пересечения двух плоскостей

Линия k пересечения плоскостей Ω, Σ определяется по двум её точкам M, N. Каждая из этих точек является точкой пересечения плоскости Σ с любыми двумя линиями а, b плоскости Ω. Каждая из точек M, N определяется методом вспомогательной секущей плоскости (см. п. 1.5.7, рис. 1.38).

Например, на рис. 1.42 одна из плоскостей задана треугольником АВС, другая – параллельными прямыми a, b. Для определения точки М пересечения плоскостей по прямой а проводится фронтально-проецирующая плоскость Ψ, заданная фронтальным следом Ψ2, м находится линия l пересечения вспомогательной плоскости Ψ с треугольником АВС. Точка М является точкой пересечения прямой l с прямой а. Для определения точки N пересечения плоскостей по прямой b проводится фронтально-проецирующая плоскость Θ, заданная фронтальным следом Θ2, и находится линия m пересечения вспомогательной плоскости Θ с треугольником АВС. Точка N — точка пересечения прямой m с прямой b. Линия k пересечения двух заданных плоскостей проходит через точки M, N. Задача о нахождении линии пересечения двух плоскостей дополняется определением видимости частей прямых a, b и отрезков АВ, ВС, АС. Проекции k1, k2 линии пересечения двух плоскостей всегда видимы.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСпособ вспомогательных секущих плоскостей

Суть способа плоскостей-посредников при определении линии пересечения двух плоскостей

Линия k пересечения плоскостей Ω, Σ определяется по двум её точкам M, N. Для определения точки М вводится плоскость Ψ особого положения, которая пересекает заданные плоскости по прямым линиям a, b. Точкой пересечения этих прямых является точка М. Для определения точки N вводится плоскость Θ особого положения, пересекающая заданные плоскости по прямым линиям с, d. Точкой пересечения этих прямых является точка N. Искомая линия k пересечения плоскостей Ω, Σ проходит через найденные точки М, N (рис. 1.43).

Например, на рис. 1.44 две плоскости заданы треугольниками АВС, DEF. Для определения точки М пересечения плоскостей вводится фронтально-проецирующая плоскость Ψ, заданная фронтальным следом Ψ2, и находятся линии a, b её пересечения с треугольниками АВС, DEF. Точка М является точкой пересечения прямых a, b. Для определения точки N пересечения плоскостей вводится горизонтальная плоскость уровня Θ, заданная фронтальным следом Θ2, и находятся линии с, d её пересечения с треугольниками АВС, DEF. Точка N является точкой пересечения прямых c, d.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСпособ плоскостей — посредников

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСпособ плоскостей — посредников особого положения

Суть способа следов при определении линии пересечения двух площадей

Линия k пересечения плоскостей Σ, Ω строится по двум точкам M, N. Строятся следы плоскостей. Точки M, N являются точками пересечения двух пар одноимённых следов плоскостей (рис. 1.45).

Например, на рис. 1.46 плоскость Σ задана параллельными прямыми a, b, плоскость – треугольником АВС. Горизонтальный след Косоугольная проекция треугольника авсплоскости Σ строится по двум следам Косоугольная проекция треугольника авспрямых a, b. Фронтальный след Косоугольная проекция треугольника авспроходит через точку Косоугольная проекция треугольника авси фронтальный след F прямой а. Горизонтальный след Косоугольная проекция треугольника авсплоскости строится по двум следам Косоугольная проекция треугольника авспрямых АВ, ВС. Фронтальный след Косоугольная проекция треугольника авспроходит через точку Косоугольная проекция треугольника авси фронтальный след Косоугольная проекция треугольника авспрямой АВ. Точка М, которая совпадает со своей горизонтальной проекцией М1, является точкой пересечения горизонтальных следов Косоугольная проекция треугольника авсТочка N, которая совпадает со своей фронтальной проекцией N2, является точкой пересечения фронтальных следов Косоугольная проекция треугольника авс. Проекции М2, N1 находятся на оси х. Горизонтальная проекция k1 искомой линии k пересечения двух площадей проходит через точки М1, N1, фронтальная k2 – через точки М2, N2.

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсСпособ следов

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсОпределение линии пересечения плоскостей способом следов

Способ следов можно рассматривать как частный случай способа плоскостей-посредников, в котором плоскости-посредники являются двумя плоскостями проекций (на рис. 1.46 – П1, П2).

Перпендикулярность прямой и плоскости и двух плоскостей

Условие перпендикулярности прямой и плоскости

Прямая п перпендикулярна плоскости Σ, если она перпендикулярна двум не параллельным прямым этой плоскости (рис. 1.47).

Как эти прямые удобно выбирать линии уровня плоскости, например, горизонталь h и фронталь f. Только в этом случае прямые углы между п, h и f проецируются в натуральную величину на П1, П2 (см. п. 1.4.8, рис. 1.26).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПерпендикулярность прямой и плоскости

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПостроение прямой, перпендикулярной плоскости

На рис. 1.48 построены проекции прямой п, которая проходит через точку D перпендикулярно плоскости Σ, заданной параллельными прямыми a, b. В плоскости Σ через произвольно выбранную её точку А проведены горизонталь h и фронталь f. из горизонтальной проекции D1 точки D проведена горизонтальная проекция Косоугольная проекция треугольника авсперпендикулярная проекции h1. из фронтальной проекции D2 проведена фронтальная проекция Косоугольная проекция треугольника авс, перпендикулярная проекции f2.

Условие перпендикулярности двух плоскостей

Две плоскости Ω, Σ перпендикулярны, если любая прямая Косоугольная проекция треугольника авс, которая принадлежит первой плоскости, перпендикулярна второй плоскости (рис. 1.49).

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПерпендикулярность плоскостей

Косоугольная проекция треугольника авс

Косоугольная проекция треугольника авсПостроение взаимно перпендикулярных плоскостей

На рис. 1.50 построены проекции плоскости Ω, которая проходит через точку D перпендикулярно плоскости Σ, заданной параллельными прямыми a, b. Плоскость задана двумя прямыми Косоугольная проекция треугольника авспересекающимися в точке D. При этом прямая Косоугольная проекция треугольника авсперпендикулярна плоскости Σ (рис. 1.48). Прямая Косоугольная проекция треугольника авсимеет произвольную ориентацию в пространстве, поэтому задача построения двух взаимно перпендикулярных плоскостей имеет бесконечное число решений.

Линия пересечения взаимно перпендикулярных плоскостей по необходимости определяется одним из способов, описанных в п. 1.5.8.

Примеры и образцы решения задач:

Услуги по выполнению чертежей:

Присылайте задания в любое время дня и ночи в ➔ Косоугольная проекция треугольника авсКосоугольная проекция треугольника авс

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Косоугольная проекция треугольника авс

Плоскостью называется поверхность, образуемая движением прямой линии, которая движется параллельно самой себе по неподвижной направляющей прямой .

Проекции плоскости на комплексном чертеже будут различны в зависимости от того, чем она задана. Как известно из геометрии, плоскость может быть задана: а) тремя точками, не лежащими на одной прямой; б) прямой линией и точкой, лежащей вне этой прямой; в) двумя пересекающимися прямыми; г) двумя параллельными прямыми.

Косоугольная проекция треугольника авс

На комплексном чертеже (рис. 99) проекции плоскости также задаются проекциями этих элементов, например, на рис 99, а — проекциями трех точек А, , и С, не лежащих на одной прямой; на рис. 99, б — проекциями прямой ВС и точки А у не лежащей на этой прямой; на рис. 99, в — проекциями двух пересекающихся прямых; на рис. 99, г проекциями двух параллельных прямых линий АВ и CD.

На рис. 100 плоскость задана прямыми линиями, по которым эта плоскость пересекает плоскости проекций. Такие линии называются следами плоскости.
Линия пересечения данной плоскости Р с горизонтальной плоскостью проекций Н называется горизонтальным следом плоскости Р и обозначается Рн.
Линия пересечения плоскости Р с фронтальной плоскостью проекций V называется фронтальным следом этой плоскости и обозначается Рv.

Линия пересечения плоскости Р с профильной плоскостью проекций W называется профильным следом этой плоскости и обозначается Pw.

Следы плоскости пересекаются на осях проекций. Точки пересечения следов плоскости с осями проекций называются точками схода следов. Эти точки обозначаются Рx, Рy и Рz.
Косоугольная проекция треугольника авс

Расположение следов плоскости Р на комплексном чертеже по отношению к осям проекций определяет положение самой плоскости по отношению к плоскостям проекций. Например, если плоскость Р имеет фронтальный и профильный следы Pv и Pw, параллельные осям Ох и Оу то такая плоскость параллельна плоскости Н и называется горизонтальной (рис. 101, и). Плоскость Р со следами Рн и Pw , параллельными осям проекций Ох и Oz (рис. 101, называется фронтальной, а плоскость Р со следами Pv и Pн параллельными осям проекций Оу и Oz, — профильной (рис. 101, в).

Косоугольная проекция треугольника авс

Горизонтальная, фронтальная и профильная плоскости, перпендикулярные к двум плоскостям проекций, называются плоскостями уровня. Если на комплексном чертеже плоскость уровня задана не следами, а какой-нибудь плоской фигурой, например, треугольником или параллелограммом (рис. 101, г, д, е), то на одну из плоскостей проекций эта фигура проецируется без искажения, а на две другие плоскости проекций — в виде отрезков прямых.

ПРОЕЦИРУЮЩИЕ ПЛОСКОСТИ И ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ

Плоскость, перпендикулярная к плоскости Н (рис. 102, а),называется горизонтально-проецирующей плоскостью. Фронтальный след Pv этой плоскости перпендикулярен оси Ох, а горизонтальный след Рн расположен под углом к оси Ох (комплексный чертеж на рис. 102, а)

Если горизонтально-проецирующая плоскость задана не следами, а какой-либо фигурой, например треугольником АВС (рис. 102, 6), то горизонтальная проекция этой плоскости представляет собой прямую линию, а фронтальная и профильная проекции — искаженный вид треугольника АВС.

Косоугольная проекция треугольника авс

Фронтально-проецирующей плоскостью называется плоскость, перпендикулярная к фронтальной плоскости проекций (рис. 102, в).

Горизонтальный след этой плоскости перпендикулярен оси Ох, а фронтальный след расположен под некоторым углом к оси Ох (комплексный чертеж на рис. 102, в).

При задании фронтально-проецирующей плоскости не следами, а, например, параллелограммом ABCD фронтальная проекция такой плоскости представляет собой прямую линию (рис. 102, г), а на горизонтальную и профильную плоскости проекций параллелограмм проецируется с искажением.

Профильно-проецирующей плоскостью называется плоскость, перпендикулярная к плоскости W (рис. 102, д). Следы Pv и Рн этой плоскости параллельны оси Ох.

При задании профильно-проецирующей плоскости не следами, а, например, треугольником АВС (рис. 102, е) профильная проекция такой плоскости представляет собой прямую линию. Плоскости, перпендикулярные двум плоскостям проекций, как было сказано, называются плоскостями уровня.

Если плоскость Р не перпендикулярна ни одной из плоскостей проекций (рис. 102, ж), то такая плоскость называется плоскостью общего положения. Все три

Косоугольная проекция треугольника авс
следа Pv, Рн и Pw плоскости Р наклонены к осям проекций.

Если плоскость общего положения задана не следами, а, например, треугольником АВС (рис. 102, з), то этот треугольник проецируется на плоскости H, V и W в искаженном виде.

ПРОЕКЦИИ ТОЧКИ И ПРЯМОЙ, РАСПОЛОЖЕННЫХ НА ПЛОСКОСТИ

Если прямая расположена на плоскости, то она должна проходить через две какие-либо точки, принадлежащие этой плоскости. Такие две точки могут быть взяты на следах плоскости — одна на горизонтальном, а другая на фронтальном. Так как следы прямой и плоскости находятся на плоскостях проекций и то следы прямой, принадлежащей плоскости, должны быть расположены на одноименных следах этой плоскости (рис. 103, а);например, горизонтальный след Н прямой — на горизонтальном следе плоскости, фронтальный след V прямой — на фронтальном следе Рv плоскости (рис. 103, б).

Косоугольная проекция треугольника авс

Для того чтобы на комплексном чертеже плоскости Р, заданной следами, провести какую-либо прямую общего положения, необходимо наметить на следах плоскости точки v’ или считать их следами искомой прямой (точнее, v’ — фронтальной проекцией горизонтального следа прямой).

Опустив перпендикуляры из v’ и на ось проекций х, находим на ней вторые проекции следов прямой: v — горизонтальную проекцию фронтального следа прямой и h’ — фронтальную проекцию горизонтального следа прямой. Соединив одноименные проекции следов, т. е. v’c h и v c h прямыми, получим две проекции прямой линии, расположенной в плоскости общего положения Р.

Очень часто требуется провести на плоскости горизонталь и фронталь, которые называются главными линиями плоскости или линиями уровня. Главные линии помогают решать многие задачи проекционного черчения.

Горизонталь и фронталь имеют в системе двух плоскостей V и Н только по одному следу (например, горизонталь имеет только фронтальный след). Поэтому, зная один след главной линии, проекцию главной линии проводят по заранее известному направлению. Это направление для горизонтали видно из рис. 104, а, где показана плоскость общего положения и горизонталь, лежащая на ней. Из рисунка видно, что горизонтальная проекция горизонтали параллельна горизонтальному следу плоскости.

Косоугольная проекция треугольника авс

Таким образом, чтобы на комплексном чертеже плоскости Р провести в этой плоскости какую-либо горизонталь, нужно наметить на следе Рv плоскости точку v’ (рис. 104, б) и считать ее фронтальной проекцией фронтального следа горизонтали. Затем через точку v’ параллельно оси х проводят прямую, которая будет фронтальной проекцией горизонтали.

Опустив перпендикуляр из точки v’ на ось x , получают точку v, которая будет горизонтальной проекцией фронтального следа горизонтали. Прямая, проведенная из точки v параллельно следу PH плоскости, представляет собой горизонтальную проекцию искомой горизонтали. Построение проекции фронтали показано на рис. 104, в и г.

11 с редко требуется провести горизонталь и фронталь на проецирующих плоскостях. Рассмотрим, например, построение горизонтали на фронтально-проецирующей плоскости (рис. 105). На следе плоскости Рv намечаем фронтальную проекцию фронтального следа горизонтали и на оси находим его горизонтальную проекцию v (рис. 105, а). Затем через точку проводим параллельно Рн горизонтальную проекцию горизонтали; фронтальная проекция горизонтали совпадает с точкой v’.

Косоугольная проекция треугольника авс

Если плоскость задана не следами, а пересекающимися или параллельными прямыми, то построение проекций горизонтали или фронтали, расположенных в этой плоскости, выполняется следующим образом.

Пусть плоскость задана двумя параллельными прямыми AВ и СD (рис. 105, 6). Для построения горизонтали, лежащей в этой плоскости, проводим параллельно оси х фронтальную проекцию горизонтали и отмечаем точки е’и f’ пересечения фронтальной проекции горизонтали с фронтальными проекциями параллельных прямых, которыми задана плоскость. Через точки е’и f’ проводим вертикальные линии связи до пересечения с ab и cd в точках е и f. Точки е и f соединяем прямой линией, которая и будет горизонтальной проекцией горизонтали.

Если требуется найти следы плоскости, заданной пересекающимися или параллельными прямыми, надо найти следы этих прямых и через полученные точки провести искомые следы плоскости.

Рассмотрим комплексный чертеж параллелограмма ABCD (рис. 106, a),который задает некоторую плоскость X. Отрезок DC расположен в плоскости H, следовательно, его горизонтальная проекция dc является горизонтальным следом плоскости (точнее — горизонтальной проекцией горизонтального следа плоскости).

Чтобы найти фронтальный след этой плоскости, необходимо продолжить горизонтальную проекцию dc прямой DC до пересечения с осью х в точке Рх, через которую должен пройти искомый фронтальный след плоскости.

Косоугольная проекция треугольника авс

Второй точкой v’, через которую пройдет искомый фронтальный след плоскости, является фронтальный след прямой АВ (фронтальная проекция фронтального следа). Фронтальную проекцию фронтального следа прямой АВ находим, продолжая горизонтальную проекцию ab прямой АВ до пересечения с осью х в точке v, которая будет горизонтальной проекцией искомого фронтального следа прямой АВ. Фронтальная проекция фронтального следа этой прямой находится на перпендикуляре, восставленном из точки v к оси х, в точке v’ его пересечения с продолжением фронтальной проекции а’в’ прямой АB. Соединив точки Px с v’, находим фронтальный след Pv плоскости.

Пример решения подобной задачи приведен на рис 106, б.

Часто на комплексных чертежах приходится решать такую задачу: по одной из заданных проекций точки, расположенной на заданной плоскости, определить две другие проекции точки. Ход решения задачи следующий.

Через заданную проекцию точки, например фронтальную проекцию n’ точки N, расположенной на плоскости треугольника АВС (рис. 107), проводим одноименную проекцию вспомогательной прямой любого направления, например m’к’.

Косоугольная проекция треугольника авс

Горизонталью плоскости называется прямая, принадлежащая этой плоскости и параллельная горизонтальной плоскости проекций Н.

Строим другую проекцию mк вспомогательной прямой. Для этого проводим вертикальные линии связи через точки m’ и к’ до пересечения с линиями ас и вс. Из точки n’ проводим линию связи до пересечения с проекцией mк в искомой точке n.

Профильную проекцию n» находим по общим правилам проецирования.

В качестве вспомогательной прямой для упрощения построения чаще используются горизонталь или фронталь.

Чтобы найти какую-либо точку на плоскости Р, например точку А (рис. 108, а и б) надо найти ее проекции а’и а, которые располагаются на одноименных проекциях горизонтали, проходящей через эту точку. Через точку А проведена горизонталь Av’ .

Косоугольная проекция треугольника авс

Проводим проекции горизонтали: фронтальную — через v’ параллельно оси х, горизонтальную — через v параллельно следу Рн плоскости Р. На фронтальной проекции горизонтали намечаем фронтальную проекцию а’ искомой точки и, проводя вертикальную линию связи, определяем горизонтальную проекцию а точки А.

Если точка лежит на проецирующей плоскости, то построение ее проекций упрощается. В этом случае одна из проекций точки всегда расположена на следу плоскости (точнее, на его проекции). Например, горизонтальная проекция а точки А, расположенной на горизонтально-проецирующей плоскости Р, находится на горизонтальной проекции горизонтального следа плоскости (рис. 108, в и г)

При заданной фронтальной проекции a’ точки А, лежащей на горизонтально-проецирующей плоскости , найти вторую проекцию этой точки (горизонтальную) можно без вспомогательной прямой, посредством проведения линии связи через а’ до пересечения со следом РН.

Если точка расположена на фронтально-проецирующей плоскости Р (рис. 108, д и е), то ее фронтальная проекция а’ находится на фронтальном следе Хv плоскости Р.

ПРОЕКЦИИ ПЛОСКИХ ФИГУР

Зная построение проекций прямых и точек, расположенных на плоскости, можно построить проекции любой плоской фигуры, например, прямоугольника, треугольника, круга.

Как известно, каждая плоская фигура ограничена отрезками прямых или кривых линий, которые могут быть построены по точкам.

Проекции фигуры, ограниченной прямыми линиями (треугольника и многоугольника), строят по точкам (вершинам). Затем одноименные проекции вершин соединяют прямыми линиями и получают проекции фигур.

Проекции круга или другой криволинейной фигуры строят при помощи нескольких точек, которые берут равномерно по контуру фигуры. Одноименные проекции точек соединяют плавной кривой по лекалу.

Проекции плоской фигуры строят различными способами в зависимости от положения фигуры относительно плоскостей проекций и Наиболее просто построить проекции фигуры, расположенной параллельно плоскостям Н и V; сложнее — при расположении фигуры на проецирующей плоскости или на плоскости общего положения.

Рассмотрим несколько примеров.

Если треугольник АВС расположен на плоскости, параллельной плоскости H (рис. 109, a), то горизонтальная проекция этого треугольника будет его действительным видом, а фронтальная проекция — отрезком прямой, параллельным оси х. Комплексный чертеж треугольника АВС показан на рис. 109, 6. Такой треугольник можно видеть на изображении резьбового резца (рис. 109, в),передняя грань которого треугольная.

Косоугольная проекция треугольника авс

Трапеция ABCD расположена на фронтально-проецирующей плоскости (рис. 110, а). Фронтальная проекция трапеции представляет собой отрезок прямой линии, а горизонтальная — трапецию (рис. 110, б)

Задняя грань отрезного резца (рис. 110, в) имеет форму трапеции.

Рассматривая плоскость, параллельную горизонтальной, фронтальной или профильной плоскости проекций (плоскость уровня), можно заметить, что любая фигура, лежащая в этой плоскости, имеет одну из проекций, представляющую собой действительный вид этой фигуры; вторая и третья проекции фигуры совпадают со следами этой плоскости.

Рассматривая проецирующую плоскость, заметим, что любая точка, отрезок прямой или кривой линии, а также фигуры, расположенные на проецирующей плоскости, имеют одну проекцию, расположенную на следе этой плоскости. Например, если круг лежит на фронтально-проецирующей плоскости Р (рис. 111), то фронтальная проекция круга совпадает с фронтальным следом Pv плоскости Р. Две другие проекции круга искажены и представляют собой эллипсы. Большие оси эллипсов равны проекциям диаметра круга 37. Малые оси эллипсов равны проекциям диаметра круга 15, перпендикулярного диаметру 37.

Косоугольная проекция треугольника авс

На рис. 111,6 показано колено трубы с двумя фланцами. Горизонтальная проекция контура нижнего фланца, который расположен в горизонтальной плоскости, будет действительным видом окружности. Горизонтальная проекция контура верхнего фланца изобразится в виде эллипса.

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ

Две плоскости могут быть взаимно параллельными или пересекающимися.

Из стереометрии известно, что если две параллельные плоскости пересекают какую-либо третью плоскость, то линии пересечения этих плоскостей параллельны между собой. Исходя из этого положения, можно сделать вывод, что одноименные следы двух параллельных плоскостей Р и Q также параллельны между собой.

Косоугольная проекция треугольника авс

Если даны две профильно-проецирующие плоскости Р и К (рис. 112, а), то параллельность их фронтальных и горизонтальных следов на комплексном чертеже в системе V и Н недостаточна для того, чтобы определить, параллельны эти плоскости или нет. Для этого необходимо построить их профильные следы в системе V, Н и W (рис. 112, б). Плоскости Р и K будут параллельны только в том случае, если параллельны их профильные следы Pw и Kw.

Одноименные следы пересекающихся плоскостей Р и Q (рис. 112, в) пересекаются в точках V и H, которые принадлежат обеим плоскостям, т. е. линии их пересечения. Так как эти точки расположены на плоскостях проекций, то, следовательно, они являются также следами линии пересечения плоскостей. Чтобы на комплексном чертеже построить проекции линии пересечения двух плоскостей Р и Q, заданных следами Pv, Рн и Qv,Qh, необходимо отметить точки пересечения одноименных следов плоскостей, т. е. точки v’ и h (рис. 112, г); точка v’ — фронтальная проекция фронтального следа искомой линии пересечения плоскостей Р и Q, h — горизонтальная проекция горизонтального следа этой же прямой. Опуская перпендикуляры из точек v’ и h на ось х, находим точки v и h’. Соединив прямыми одноименные проекции следов, т. е. точки v’ и h’, v и h’ получим проекции линии пересечения плоскостей Р и Q.

ПРЯМАЯ, ПРИНАДЛЕЖАЩАЯ ПЛОСКОСТИ

Косоугольная проекция треугольника авс

Для этого фронтальную проекцию отрезка m’n’ продолжаем до пересечения с отрезками a’b’ и c’d’ (проекциями сторон треугольника АВС), получаем точки (рис. 113, б).

Из точек е’к’ проводим линии связи на горизонтальную проекцию до пересечения с отрезками ab и ca , получаем точки еk. Продолжим горизонтальную проекцию mn отрезка прямой MN до пересечения с проекциями сторон bа и са, если точки пересечения совпадут с ранее полученными точками e и k то прямая MN принадлежит плоскости треугольника.

ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПЛОСКОСТЬЮ

Если прямая АВ пересекается с плоскостью Р, то на комплексном чертеже точка их пересечения определяется следующим образом.

Через прямую А В проводят любую вспомогательную плоскость Q. Для упрощения построений плоскость Q обычно берется проецирующей (рис. 114, a). В данном случае проведена вспомогательная горизонтально-проецирующая плоскость Q. Через горизонтальную проекцию аb прямой АВ проводят горизонтальный след QH плоскости Q и продолжают его до пересечения с осью x в точке Qx . Из точки Qx к оси х восставляют перпендикуляр QxQy , который будет фронтальным следом Qv вспомогательной плоскости Q.

Косоугольная проекция треугольника авс

Вспомогательная плоскость Q пересекает данную плоскость Р по прямой VH, следы которой лежат на пересечении следов плоскостей Р и Q. Заметив точки пересечения следов Pv и Qv — точку v’ и следов Qн и PH — точку h,опускают из этих точек на ось х перпендикуляры, основания которых — точки v’ и h’ — будут вторыми проекциями следов прямой VH. Соединяя точки v’и h’, v и h, получают фронтальную и горизонтальную проекции линии пересечения плоскостей.

Точка пересечения М заданной прямой AB и найденной прямой VH и будет искомой точкой пересечения прямой АВ с плоскостью Р. Фронтальная проекция m’ этой точки расположена на пересечении проекций a’b’ и v’h’. Горизонтальную проекцию m точки М находят, проводя вертикальную линию связи из точки m’ до пересечения с ab.

Если плоскость задана не следами, а плоской фигурой, например, треугольником (рис. 114, 6), то точку пересечения прямой MN с плоскостью треугольника АВС находят следующим образом.

Через прямую МN проводят вспомогательную фронтально-проецирующую плоскость . Для этого через точки m’ и n’ проводят фронтальный след плоскости Ру продолжают его до оси x и из точки пересечения следа плоскости Ру с осью х опускают перпендикуляр Рн, который будет горизонтальным следом плоскости Р.

Затем находят линию ED пересечения плоскости Р с плоскостью данного треугольника ABC. Фронтальная проекция e’d’ линии ED совпадает с m’n’. Горизонтальную проекцию ed находят, проводя вертикальные линии связи из точек е’и d’ до встречи с проекциями ab и ас сторон треугольника АВС. Точки e и d соединяют прямой. На пересечении горизонтальной проекции ed линии ED с горизонтальной проекцией прямой MN находят горизонтальную проекцию k искомой точки К. Проведя из точки k вертикальную линяю связи, на ходят фронтальную проекцию k’ Точка К — искомая точка пересечения прямой МК с плоскостью треугольника АВС.

Косоугольная проекция треугольника авс

В частном случае прямая может быть перпендикулярна плоскости Р.Из условия перпендикулярности прямой к плоскости следует, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим на этой плоскости (в частности, этими прямыми могут быть следы плоскости). Тогда проекции прямой АВ будут перпендикулярны одноименным следам этой плоскости (рис 115, а) Фронтальная проекция а’b’ перпендикулярна фронтальному следу Ру, а горизонтальная проекция ab перпендикулярна горизонтальному следу Рн плоскости Р.

Если плоскость задана параллельными или пересекающимися прямыми, то проекции прямой, перпендикулярной этой плоскости, будут перпендикулярны горизонтальной проекции горизонтали и фронтальной проекции фронтали, лежащих на плоскости.

Таким образом, если, например, на плоскость, заданную треугольником АВС необходимо опустить перпендикуляр, то построение выполняется следующим образом (рис. 115, б).

На плоскости проводят горизонталь СЕ и фронталь FA. Затем из заданных проекций d и d’ точки D опускают перпендикуляры соответственно на ce и f’a’. Прямая, проведенная из точки D будет перпендикулярна плоскости треугольника АВС.

ПЕРЕСЕЧЕНИЕ ПЛОСКОСТЕЙ

Задачи на построение линии пересечения плоскостей, заданных пересекающимися прямыми, можно решать подобно задаче на пересечение плоскости с прямыми линиями. На рис. 116 показано построение линии пересечения плоскостей, заданных треугольниками АВС и DEF. Прямая MN построена по найденным точкам пересечения сторон DE и EF треугольника DEF с плоскостью треугольника АВС.

Косоугольная проекция треугольника авс

Например, чтобы найти точку M, через прямую DF проводят фронтально-проецирующую плоскость Р, которая пересекается с плоскостью треугольника АВС по прямой 12. Через полученные точки 1′ и 2′ проводят вертикальные линии связи до пересечения их с горизонтальными проекциями ав и ас сторон треугольника АВС в точках 1 и 2. На пересечении горизонтальных проекций df и 12 получают горизонтальную проекцию m искомой точки М, которая будет точкой пересечения прямой DF с плоскостью АВС. Затем находят фронтальную проекцию m’ точки M. Точку N пересечения прямой EF с плоскостью АВС находят так же, как и точку М.

Соединив попарно точки m’ и n’, m и n, получают проекции линий пересечения MN плоскостей АВС и DEF.

📺 Видео

Как прочитать чертежи: основы проецированияСкачать

Как прочитать чертежи: основы проецирования
Поделиться или сохранить к себе: