Косинус не равен нулю на окружности

Решение уравнений cosx

Косинус не равен нулю на окружности

Косинус не равен нулю на окружности

Косинус не равен нулю на окружности

Косинус не равен нулю на окружности

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Решение уравнений cos(x)

— это абсцисса точки на единичной окружности, соответствующей углу .

Косинус не равен нулю на окружности

cosx = 1

cosx = 1

На единичной окружности имеется лишь одна точка с абсциссой 1.

Косинус не равен нулю на окружности

Эта точка соответствует бесконечному множеству углов: 0, , , , . Все они получаются из нулевого угла прибавлением целого числа полных углов . Все эти углы могут быть записаны одной формулой:

Косинус не равен нулю на окружности

где, — множество целых чисел.

cosx = -1

cosx = -1

Снова, на единичной окружности есть всего лишь одна точка с абсциссой -1.

Косинус не равен нулю на окружности

Эта точка соответствует углу и всем углам, отличающихся от на несколько полных оборотов в обе стороны.

Косинус не равен нулю на окружности

cosx = 0

cosx = 0

Точки с абсциссой образуют на единичной окружности вертикальную диаметральную пару.

Косинус не равен нулю на окружности

Все углы, отвечающие этим точкам, получаются из прибавлением целого числа (полуоборотов):

Косинус не равен нулю на окружности

cosx = 1/2

Имеем вертикальную пару точек с абсциссой 1/2.

Косинус не равен нулю на окружности

Все углы, соответствующие верхней точке, описываются формулой:

Косинус не равен нулю на окружности

Все углы, соответствующие нижней точке, описываются формулой:

Косинус не равен нулю на окружности

Обе формулы можно записать одной формулой:

Косинус не равен нулю на окружности

Другие уравнения с косинусом

Остальные уравнения с косинусом решаются аналогично:

Видео:ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИСкачать

ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИ

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Косинус не равен нулю на окружности

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:Тригонометрическая окружность. Как выучить?Скачать

    Тригонометрическая окружность. Как выучить?

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:Как найти значения синуса и косинуса, НЕ запоминая!Скачать

    Как найти значения синуса и косинуса, НЕ запоминая!

    Узнать ещё

    Знание — сила. Познавательная информация

    Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

    Синус, косинус, тангенс, котангенс за 5 МИНУТ

    cosx=0

    Эта ассоциация помогает легко запомнить формулу для решения тригонометрического уравнения cosx=0.

    Используем ассоциацию косинус-колобок.

    Начинаются они одинаково, на ко-. Колобок движется влево-вправо, в силу особенностей своей фигуры. А влево-вправо на координатной плоскости происходит движение вдоль оси ox. Значит косинус — это x.

    Для решения уравнения cosx=0 нам нужно найти точки, в которых косинус обращается в нуль. Как и в других частных случаях косинуса, решение ищем на единичной окружности, то есть на окружности с радиусом R=1.

    Итак, cosx=0, косинус — это x, значит, двигаться ни влево, ни вправо не надо (колобок подпрыгнул на месте:)).

    На единичной окружности x=0 соответствуют две точки: одна вверху, это п/2, другая — внизу, -п/2. Чтобы из одной точки попасть в другую, надо пройти половину окружности, то есть п.

    Но через каждый интервал длиной п мы будет получать все новые и новые точки, в которых косинус равен нулю.

    Чтобы учесть все такие точки, к первой точке прибавляем пn, где n — целое число (то есть принадлежит Z).

    Таким образом, решение уравнения cosx=0 есть множество точек x=п/2+пn, где n — целое число. И соответствующий чертеж для иллюстрации ассоциации:

    📽️ Видео

    Таблица значений тригонометрических функций - как её запомнить!!!Скачать

    Таблица значений тригонометрических функций - как её запомнить!!!

    Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

    Как видеть тангенс? Тангенс угла с помощью единичного круга.

    Как искать точки на тригонометрической окружности.Скачать

    Как искать точки на тригонометрической окружности.

    ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

    ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

    ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

    ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

    Тригонометрическая окружность для непонимающихСкачать

    Тригонометрическая окружность для непонимающих

    Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать

    Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэ

    Отбор корней по окружностиСкачать

    Отбор корней по окружности

    Как решать тригонометрические неравенства?Скачать

    Как решать тригонометрические неравенства?

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

    Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

    Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

    СИНУС И КОСИНУС ЛЮБЫХ УГЛОВ | ТригонометрияСкачать

    СИНУС И КОСИНУС ЛЮБЫХ УГЛОВ | Тригонометрия
    Поделиться или сохранить к себе: