Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
- «Управление общеобразовательной организацией: новые тенденции и современные технологии»
- Всё про окружность и круг
- Геометрия. Урок 5. Окружность
- Определение окружности
- Отрезки в окружности
- Дуга в окружности
- Углы в окружности
- Длина окружности, длина дуги
- Площадь круга и его частей
- Теорема синусов
- Примеры решений заданий из ОГЭ
- 🎦 Видео
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
по теме «Взаимное расположение прямой и окружности. Взаимное расположение двух окружностей»
— условия взаимного расположения прямой и окружности;
— определение секущей и касательной к окружности;
— свойства касательной к окружности;
— теорему о о перпендикулярности диаметра и хорды и обратную к ней;
— условия взаимного расположение двух окружностей;
— определение концентрических окружностей.
— проводить касательную к окружности;
— использовать свойства касательной при решении задач;
— решать задачи на применение теоремы о перпендикулярности диаметра и хорды;
— решать задачи на условия взаимного расположения прямой и окружности и двух окружностей.
В результате изучения темы нужно:
1. Геометрия. 7 класс. Ж. Кайдасов, Г. Досмагамбетова, В. Абдиев. Алматы «Мектеп». 2012
2. Геометрия. 7 класс. К.О.Букубаева, А.Т.Миразова. Алматы « Атамұра ». 2012
3. Геометрия. 7 класс. Методическое руководство. К.О.Букубаева. Алматы « Атамұра ». 2012
4. Геометрия. 7 класс. Дидактический материал. А.Н.Шыныбеков. Алматы « Атамұра ». 2012
5. Геометрия. 7 класс. Сборник задач и упражнений. К.О.Букубаева, А.Т.Миразова. Алматы « Атамұра ». 2012
Приобретать знания – храбрость,
Приумножать их – мудрость,
А умело применять их – великое искусство.
Помни, что работать нужно по алгоритму.
Не забывай проходить проверку, делать пометки на полях, заполнять рейтинговый лист темы.
Пожалуйста, не оставляй без ответа, возникшие у тебя вопросы.
Будь объективен во время взаимопроверки, это поможет и тебе, и тому, кого ты проверяешь.
1) Рассмотри в заимное расположение прямой и окружности и заполни таблицу (3б):
Случай 1: Прямая не имеет с окружностью ни одной общей точки (не пересекаются)
a d — расстояние от точки (центра окружности) до прямой
r – радиус окружности
d > r ,
Случай 2 : Прямая и окружность имеют только одну общую точку ( касаются )
d — расстояние от точки (центра окружности) до прямой
r – радиус окружности
d = r ,
Случай 3: Прямая имеет с окружностью две общие точки (пересекаются)
d — расстояние от точки (центра окружности) до прямой
r – радиус окружности
d r ,
Условия взаимодействия (расстояние до прямой и радиус (d и r ))
Количество общих точек
2) Прочти определения, теоремы, следствия и выучи их (5б):
Определение: Прямая, имеющая с окружностью две общие точки, называется секущей.
Определение : Прямая, имеющая с окружностью только одну общую точку и перпендикулярная радиусу, называется касательной к окружности.
Теорема 1:
Диаметр окружности, разделяющий хорду пополам, перпендикулярен к этой хорде.
Теорема 2 (обратная теореме 1):
Если диаметр окружности перпендикулярен к хорде, то он разделит хорду на две равные части.
Следствие 1 : Если расстояние от центра окружности до секущей прямой меньше длины радиуса окружности, тогда прямая пересекает окружность в двух точках.
Следствие 2: Хорды окружности, находящиеся на одинаковом расстоянии от центра, равны.
Теорема 3: Касательная перпендикулярна к радиусу, проведенному в точку касания.
Следствие 3 : Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая является касательной.
Следствие 4 : Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая не пересекается с окружностью.
Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
3) Ответь на вопросы (3б):
1) Как могут располагаться прямая и окружность на плоскости?
2) Может ли прямая иметь с окружностью три общие точки?
3) Как нужно провести касательную к окружности через точку, лежащую на окружности?
4) Сколько касательных можно провести к окружности через точку:
а) лежащую на окружности;
б) лежащую внутри окружности;
в) лежащую вне окружности?
5) Дана окружность ω (O; r) и точка А, лежащая внутри окружности. Сколько точек пересечения будет иметь: а) прямая ОА; б) луч ОА; в) отрезок ОА?
6) Как разделить хорду окружности пополам?
ПРОЙДИ ПРОВЕРКУ № 1
1) Прочти текст и рассмотри рисунки. Сделай рисунки в тетради, запиши выводы и выучи их (3б):
Рассмотрим возможные случаи взаимного расположения двух окружностей. Взаимное расположение двух окружностей связано с расстоянием между их центрами.
Пересекающиеся окружности: две окружности пересекаются, если они имеют две общие точки. Пусть R 1 и R 2 – радиусы окружностей ω 1 и ω 2 , d – расстояние между их центрами. Окружности ω 1 и ω 2 пересекаются тогда и только тогда, когда числа R 1 , R 2 , d являются длинами сторон некоторого треугольника, т. е. удовлетворяют всем неравенствам треугольника:
Касающиеся окружности: две окружности касаются, если они имеют одну общую точку. Имеют общую касательную а . Пусть R 1 и R 2 – радиусы окружностей ω 1 и ω 2 , d – расстояние между их центрами.
Окружности касаются внешним образом , если они расположены
вне друг друга. При внешнем касании центры окружностей лежат по разные стороны от их общей касательной. Окружности ω 1 и ω 2 касаются внешним образом тогда и только тогда, когда R 1 + R 2 = d .
Окружности касаются внутренним образом , если одна из них расположена внутри другой. При внешнем касании центры окружностей лежат по одну сторону от их общей касательной. Окружности ω 1 и ω 2 касаются внутренним образом тогда и только тогда, когда | R 1 − R 2 |= d .
Непересекающиеся окружности: две окружности не пересекаются , если они не имеют общих точек . В этом случае одна из них лежит внутри другой, либо они лежат вне друг друга.
Пусть R 1 и R 2 – радиусы окружностей ω 1 и ω 2 , d – расстояние между их центрами.
2) Запиши определение и выучи его (1б):
Определение: Окружности, имеющие общий центр, называются концентрическими (d = 0).
3) Ответь на вопросы (3 б):
1) Как могут располагаться две окружность на плоскости?
2) От чего зависит расположение окружностей?
3) Верно ли утверждение, что две окружности могут пересекаться в трех точках?
4) Как располагаются окружности, если:
а) расстояние между центрами окружностей равно сумме их радиусов;
б) расстояние между центрами окружностей меньше суммы их радиусов;
в) расстояние между центрами больше суммы двух радиусов;
г) расстояние между центрами окружностей равно нулю.
5) К какому из перечисленных трех случаев взаимного расположения двух окружностей, относятся концентрические окружности?
6) Как называется прямая, проходящая через точку касания окружностей?
ПРОЙДИ ПРОВЕРКУ № 2
Молодец! Можно приступить к проверочной работе №1.
1) Реши на выбор четные или нечетные задачи (2б.):
1. Указать количество общих точек прямой и окружности, если:
а) расстояние от прямой до центра окружности – 6 см, а радиус окружности – 7 см;
б) расстояние от прямой до центра окружности – 7 см, а радиус окружности – 6 см;
в) расстояние от прямой до центра окружности – 8 см, а радиус окружности – 8 см.
2. Определить взаимное расположении прямой и окружности, если:
1. R=16cм, d=12см; 2. R=8 см, d=1,2 дм; 3. R=5 см, d=50мм
3. Каково взаимное расположения окружностей если:
d = 1дм, R 1 = 0,8дм, R 2 = 0,2дм
d = 4 0см, R 1 = 110см, R 2 = 70см
d = 12см, R 1 = 5см, R 2 = 3см
d = 15дм, R 1 = 10дм, R 2 = 22см
4. Укажите количество точек взаимодействия двух окружностей по радиусам и по расстоянию между центрами:
а) R = 4 см, r = 3 см, ОО 1 = 9 см; б) R = 10 см, r = 5 см, ОО 1 = 4 см
в) R = 4 см, r = 3 см, ОО 1 = 6 см; г) R = 9 см, r = 7 см, ОО 1 = 4 см.
2) Реши одну задачу на выбор (2б.):
1. Найти длины двух отрезков хорды, на которые разделяет ее диаметр окружности, если длина хорды – 16 см, а диаметр ей перпендикулярен.
2. Найти длину хорды, если диаметр ей перпендикулярен, а один из отрезков, отсекаемых диаметром от нее, равен 2 см.
3) Выполни на выбор четные или нечетны задачи на построение (2б):
1. Постройте две окружности радиусами 2 см и 4 см, расстояние между центрами которых равно нулю.
2. Начертите две окружности разных радиусов (3 см и 2 см), чтобы они касались. Отметьте отрезком расстояние между их центрами. Рассмотрите возможные варианты.
3. Постройте окружность с радиусом равным 3 см и прямую расположенную на расстоянии 4 см от центра окружности.
4. Постройте окружность с радиусом равным 4 см и прямую расположенную на расстоянии 2 см от центра окружности.
ПРОЙДИ ПРОВЕРКУ № 4
Молодец! Можно приступить к проверочной работе №2.
1) Найди ошибку в утверждении и исправь ее, обосновав свое мнение. Выбери любых два утверждения (4б.):
А) Две окружности касаются внешним образом. Радиусы их равны R = 8 см и r = 2 см, расстояние между центрами d = 6.
Б) Две окружности имеют, по крайней мере, три общие точки.
В) R = 4, r = 3, d = 5. Окружности не имеют общих точек.
Г) R = 8, r = 6, d = 4. Меньшая окружность расположена внутри большей.
Д) Две окружности не могут располагаться так, что одна находится внутри другой.
2) Реши на выбор четные или нечетные задачи (66.):
1. Две окружности касаются друг друга. Радиус большей окружности равен 19 см, а радиус малой окружности меньше на 4 см. Найдите расстояние между центрами окружностей.
2. Две окружности касаются друг друга. Радиус большей окружности равен 26 см, а радиус малой окружности в 2 раза меньше. Найдите расстояние между центрами окружностей.
3. Возьмите две точки D и F так, чтобы DF = 6 см . Начертите две окружности (D, 2см) и (F, 3 см). Как расположены между собой эти две окружности? Сделайте вывод.
4. Расстояние между точками А и В равно 7 см. Начертите окружности с центрами в точках А и В , радиусами, равными 3 см и 4 см . Как расположены окружности? Сделайте вывод.
5. Между двумя концентрическими окружностями с радиусами 4 см и 8 см расположена третья окружность так, что она касается первые две окружности. Чему равен радиус этой окружности?
6. Окружности, радиусы которых равны 6 см и 2 см, пересекаются. Причем большая окружность проходит через центр меньшей окружности. Найдите расстояние между центрами окружностей.
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Всё про окружность и круг
Окружность — это геометрическое место точек плоскости, равноудаленных от некоторой заданной точки (центра окружности). Расстояние между любой точкой окружности и ее центром называется радиусом окружности (радиус обозначают буквой R).
Значит, окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности.
Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.
Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.
Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2
Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.
Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.
Квадрат касательной равен произведению секущей на ее внешнюю часть
Центральный угол — это угол, вершина которого совпадает с центром окружности.
Дугой называется часть окружности, заключенная между двумя точками.
Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.
Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.
Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Внутренние углы, опирающиеся на одну и ту же дугу, равны.
Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.
Периметр сектора: P = s + 2R.
Площадь сектора: S = Rs/2 = ПR 2 а/360°.
Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.
Видео:Длина окружности. Математика 6 класс.Скачать
Геометрия. Урок 5. Окружность
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Определение окружности
- Отрезки в окружности
Видео:Окружность и круг, 6 классСкачать
Определение окружности
Окружность – геометрическое место точек, равноудаленных от данной точки.
Эта точка называется центром окружности .
Видео:10 класс, 11 урок, Числовая окружностьСкачать
Отрезки в окружности
Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.
Хорда a – отрезок, соединяющий две точки на окружности.
Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).
O A – радиус, D E – хорда, B C – диаметр.
Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.
Касательная к окружности – прямая, имеющая с окружностью одну общую точку.
Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.
Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).
Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Дуга в окружности
Часть окружности, заключенная между двумя точками, называется дугой окружности .
Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .
Теорема 4:
Равные хорды стягивают равные дуги.
Если A B = C D , то ∪ A B = ∪ C D
Видео:Радиус и диаметрСкачать
Углы в окружности
В окружности существует два типа углов: центральные и вписанные.
Центральный угол – угол, вершина которого лежит в центре окружности.
∠ A O B – центральный.
Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α
Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.
Градусная мара всей окружности равна 360 ° .
Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.
∠ A C B – вписанный.
Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α
Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .
∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2
Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .
∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °
Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать
Длина окружности, длина дуги
Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .
Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .
Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.
Длина окружности находится по формуле:
Длина дуги окружности , на которую опирается центральный угол α равна:
l α = π R 180 ∘ ⋅ α
Видео:Как искать точки на тригонометрической окружности.Скачать
Площадь круга и его частей
Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.
Круг – часть пространства, которая находится внутри окружности.
Иными словами, окружность – это граница, а круг – это то, что внутри.
Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.
Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.
Площадь круга находится по формуле: S = π R 2
Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Примеры сектора в реальной жизни: кусок пиццы, веер.
Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α
Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.
Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.
Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.
S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α
Видео:ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5Скачать
Теорема синусов
Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.
Видео:Тригонометрическая окружность. Как выучить?Скачать
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с окружностями.
🎦 Видео
НАМ С ЖИТЕЛЯМИ НЕЛЬЗЯ ПОКИДАТЬ ДЕРЕВНЮ В КРАСНОМ КРУГЕ В МАЙНКРАФТ | Компот MinecraftСкачать
Оброк "Культурным Наследием" Краснодар.Скачать
Площадь круга. Математика 6 класс.Скачать
Вписанная и описанная окружность - от bezbotvyСкачать
КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать
Окружность. 7 класс.Скачать
Длина окружности. Площадь круга, 6 классСкачать
+Как найти длину окружностиСкачать
8 класс, 31 урок, Взаимное расположение прямой и окружностиСкачать