Корень из 3 на 2 на числовой окружности

Значения тангенса и котангенса на тригонометрическом круге

В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.

Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.

Где же на тригонометрическом круге оси тангенсов и котангенсов?

Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).

Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).

На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Корень из 3 на 2 на числовой окружностиПочему так?

Я думаю, вы легко сообразите и сами. 🙂 Можно по-разному рассуждать. Можете, например, использовать тот факт, что Корень из 3 на 2 на числовой окружностии Корень из 3 на 2 на числовой окружности

Корень из 3 на 2 на числовой окружности

Собственно, картинка за себя сама говорит.

Если не очень все же понятно, разберем примеры:

Пример 1.

Вычислить Корень из 3 на 2 на числовой окружности

Находим на круге Корень из 3 на 2 на числовой окружности. Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что Корень из 3 на 2 на числовой окружности

Ответ: Корень из 3 на 2 на числовой окружности

Пример 2.

Вычислить Корень из 3 на 2 на числовой окружности

Находим на круге Корень из 3 на 2 на числовой окружности. Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.

Корень из 3 на 2 на числовой окружностине существует.

Ответ: не существует

Пример 3.

Вычислить Корень из 3 на 2 на числовой окружности

Корень из 3 на 2 на числовой окружности

Находим на круге точку Корень из 3 на 2 на числовой окружности(это та же точка, что и Корень из 3 на 2 на числовой окружности) и от нее по часовой стрелке (знак минус!) откладываем Корень из 3 на 2 на числовой окружности(Корень из 3 на 2 на числовой окружности). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как Корень из 3 на 2 на числовой окружности. Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение Корень из 3 на 2 на числовой окружности.

Так значит, Корень из 3 на 2 на числовой окружности

Ответ: Корень из 3 на 2 на числовой окружности

Пример 4.

Вычислить Корень из 3 на 2 на числовой окружности

Корень из 3 на 2 на числовой окружности

Поэтому от точки Корень из 3 на 2 на числовой окружности(именно там будет Корень из 3 на 2 на числовой окружности) откладываем против часовой стрелки Корень из 3 на 2 на числовой окружности.

Выходим на ось котангенсов, получаем, что Корень из 3 на 2 на числовой окружности

Ответ: Корень из 3 на 2 на числовой окружности

Пример 5.

Вычислить Корень из 3 на 2 на числовой окружности

Находим на круге Корень из 3 на 2 на числовой окружности. Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что Корень из 3 на 2 на числовой окружности

Ответ: Корень из 3 на 2 на числовой окружности

Корень из 3 на 2 на числовой окружностиТеперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Корень из 3 на 2 на числовой окружности

Вопрос по алгебре:

Корень из -3 на числовой окружности покажите

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

Речь идет о комплексных числах
√-3=√3i=√3(cosП/2+isinП/2)

Корень из 3 на 2 на числовой окружности

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Корень из 3 на 2 на числовой окружности

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:Тригонометрическая окружность. Как выучить?Скачать

    Тригонометрическая окружность. Как выучить?

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    🎦 Видео

    10 класс, 12 урок, Числовая окружность на координатной плоскостиСкачать

    10 класс, 12 урок, Числовая окружность на координатной плоскости

    Как искать точки на тригонометрической окружности.Скачать

    Как искать точки на тригонометрической окружности.

    Задание №13. Как отбирать корни в тригонометрической окружности? 🤔Скачать

    Задание №13. Как отбирать корни в тригонометрической окружности? 🤔

    Точки на числовой окружностиСкачать

    Точки на числовой окружности

    Отбор корней по окружностиСкачать

    Отбор корней по окружности

    Числовая окружность #3. Алгебра 10 класс.Скачать

    Числовая окружность #3. Алгебра 10 класс.

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

    Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точекСкачать

    Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точек

    Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

    Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

    3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

    3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

    Три способа отбора корней в задании 13 ЕГЭ профильСкачать

    Три способа отбора корней в задании 13 ЕГЭ профиль

    Координаты точек на числовой окружности, часть 2. Алгебра 10 класс.Скачать

    Координаты точек на числовой окружности, часть 2. Алгебра 10 класс.

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

    Координаты точек на числовой окружности, часть 3. Алгебра 10 класс.Скачать

    Координаты точек на числовой окружности, часть 3. Алгебра 10 класс.

    Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

    Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

    Синус на числовой окружности. Алгебра 10 класс.Скачать

    Синус на числовой окружности. Алгебра 10 класс.

    Как отбирать корни с помощью числовой окружности? Тригонометрические уравнения Часть 6 из 6Скачать

    Как отбирать корни с помощью числовой окружности? Тригонометрические уравнения Часть 6 из 6
    Поделиться или сохранить к себе: