Координаты вектора параллельного плоскости

Нормальный вектор плоскости, координаты нормального вектора плоскости

Существует ряд заданий, которым для решения необходимо нормальный вектор на плоскости, чем саму плоскость. Поэтому в этой статье получим ответ на вопрос определения нормального вектора с примерами и наглядными рисунками. Определим векторы трехмерного пространства и плоскости по уравнениям.

Видео:Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Нормальный вектор плоскости – определение, примеры, иллюстрации

Чтобы материал легко усваивался, необходимо предварительно изучить теорию о прямой в пространстве и представление ее на плоскости и векторы.

Нормальным вектором плоскости считается любой ненулевой вектор, который лежит на перпендикулярной к данной плоскости прямой.

Отсюда следует, что имеет место существование большого количества нормальных векторов в данной плоскости. Рассмотрим на рисунке, приведенном ниже.

Координаты вектора параллельного плоскости

Нормальные векторы располагаются на параллельных прямых, поэтому они все коллинеарны. То есть, при нормальном векторе n → , расположенном в плоскости γ , вектор t · n → , имея ненулевое значение параметра t , также нормальный вектор плоскости γ . Любой вектор может быть рассмотрен как направляющий вектор прямой, которая перпендикулярна этой плоскости.

Имеются случаи совпадения нормальных векторов плоскостей из-за перпендикулярности одной из параллельных плоскостей, так как прямая перпендикулярна и второй плоскости. Отсюда следует, что нормальные векторы перпендикулярных плоскостей должны быть перпендикулярными.

Рассмотрим на примере нормального вектора на плоскости.

Задана прямоугольная система координат О х у z в трехмерном пространстве. Координатные векторы i → , j → , k → считаются нормальными векторами плоскостей O y z , O x z и O x y . Это суждение верно, так как i → , j → , k → ненулевые и расположены на координатных прямых O x , O y и O z . Эти прямые перпендикулярны координатным плоскостям O y z , O x z и O x y .

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости из уравнения плоскости

Статья предназначена для того, чтобы научить находить координаты нормального вектора плоскости при известном уравнении плоскости прямоугольной системы координат О х у z . Для определения нормального вектора n → = ( A , B , C ) в плоскости необходимо наличие общего уравнения плоскости, имеющее вид A x + B y + C z + D = 0 . То есть достаточно иметь уравнение плоскости, тогда появится возможность для нахождения координат нормального вектора.

Найти координаты нормального вектора, принадлежащего плоскости 2 x — 3 y + 7 z — 11 = 0 .

По условию имеем уравнение плоскости. Необходимо обратить внимание на коэффициенты, так как они и являются координатами нормального вектора заданной плоскости. Отсюда получаем, что n → = ( 2 , — 3 , 7 ) — это нормальный вектор плоскости. Все векторы плоскости задаются при помощи формулы t · n → = 2 · t , — 3 · t , 7 · t , t является любым действительным числом не равным нулю.

Ответ: n → = ( 2 , — 3 , 7 ) .

Определить координаты направляющих векторов заданной плоскости x + 2 z — 7 = 0 .

По условию имеем, что дано неполное уравнение плоскости. Чтобы увидеть координаты, необходимо преобразовать уравнение x + 2 z — 7 = 0 к виду 1 · x + 0 · y + 2 z — 7 = 0 . Отсюда получим, что координаты нормального вектора данной плоскости равны ( 1 , 0 , 2 ) . Тогда множество векторов будет иметь такую форму записи ( t , 0 , 2 · t ) , t ∈ R , t ≠ 0 .

Ответ: ( t , 0 , 2 · t ) , t ∈ R , t ≠ 0 .

При помощи уравнения плоскости в отрезках, имеющего вид x a + y b + z c = 1 , и общего уравнения плоскости возможна запись нормального вектора этой плоскости, где координаты равны 1 a , 1 b , 1 c .

Знания о нормальном векторе позволяют с легкостью решать задачи. Часто встречающимися задачами являются задания с доказательствами параллельности или перпендикулярности плоскостей. Заметно упрощается решение задач на составление уравнений заданной плоскости. Если имеется вопрос о нахождении угла между плоскостями или между прямой и плоскостью, то формулы нормального вектора и нахождения его координат помогут в этом.

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Видео:Векторы. Метод координат. Вебинар | МатематикаСкачать

Векторы. Метод координат. Вебинар | Математика

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Координаты вектора параллельного плоскости

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Координаты вектора параллельного плоскости

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.

Координаты вектора параллельного плоскости
Координаты вектора параллельного плоскости

Длина вектора Координаты вектора параллельного плоскостив пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Координаты вектора параллельного плоскости

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Координаты вектора параллельного плоскости

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Координаты вектора параллельного плоскости

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы Координаты вектора параллельного плоскостии Координаты вектора параллельного плоскости.

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Произведение вектора на число:

Координаты вектора параллельного плоскости

Скалярное произведение векторов:

Координаты вектора параллельного плоскости

Косинус угла между векторами:

Координаты вектора параллельного плоскости

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Координаты вектора параллельного плоскости

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами Координаты вектора параллельного плоскостии Координаты вектора параллельного плоскости. Для этого нужны их координаты.

Координаты вектора параллельного плоскости

Запишем координаты векторов:

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

и найдем косинус угла между векторами Координаты вектора параллельного плоскостии Координаты вектора параллельного плоскости:

Координаты вектора параллельного плоскости

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты вектора параллельного плоскости

Координаты точек A, B и C найти легко:

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Из прямоугольного треугольника AOS найдем Координаты вектора параллельного плоскости

Координаты вершины пирамиды: Координаты вектора параллельного плоскости

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Найдем координаты векторов Координаты вектора параллельного плоскостии Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

и угол между ними:

Координаты вектора параллельного плоскости

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Координаты вектора параллельного плоскости

Запишем координаты точек:

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Координаты вектора параллельного плоскости

Найдем координаты векторов Координаты вектора параллельного плоскостии Координаты вектора параллельного плоскости, а затем угол между ними:

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Плоскость в пространстве задается уравнением:

Координаты вектора параллельного плоскости

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Координаты вектора параллельного плоскости

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Координаты вектора параллельного плоскости

Подставим в него по очереди координаты точек M, N и K.

Координаты вектора параллельного плоскости

То есть A + C + D = 0.

Координаты вектора параллельного плоскостиКоординаты вектора параллельного плоскости

Аналогично для точки K:

Координаты вектора параллельного плоскости

Получили систему из трех уравнений:

Координаты вектора параллельного плоскости

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Выразим C и B через A и подставим в третье уравнение:

Координаты вектора параллельного плоскости

Решив систему, получим:

Координаты вектора параллельного плоскости

Уравнение плоскости MNK имеет вид:

Координаты вектора параллельного плоскости

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Координаты вектора параллельного плоскости

Вектор Координаты вектора параллельного плоскости— это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку Координаты вектора параллельного плоскостиимеет вид:

Координаты вектора параллельного плоскости

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Координаты вектора параллельного плоскости

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Координаты вектора параллельного плоскости

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Координаты вектора параллельного плоскости

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор Координаты вектора параллельного плоскостиперпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть: Координаты вектора параллельного плоскости

Напишем уравнение плоскости AEF.

Координаты вектора параллельного плоскости

Берем уравнение плоскости Координаты вектора параллельного плоскостии по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Координаты вектора параллельного плоскостиКоординаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF: Координаты вектора параллельного плоскости

Нормаль к плоскости AEF: Координаты вектора параллельного плоскости

Найдем угол между плоскостями:

Координаты вектора параллельного плоскости

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Координаты вектора параллельного плоскости

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор Координаты вектора параллельного плоскостиили, еще проще, вектор Координаты вектора параллельного плоскости.

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора Координаты вектора параллельного плоскости— тоже:

Координаты вектора параллельного плоскости

Находим угол между плоскостями, равный углу между нормалями к ним:

Координаты вектора параллельного плоскости

Зная косинус угла, находим его тангенс по формуле

Координаты вектора параллельного плоскости

Получим:
Координаты вектора параллельного плоскости

Ответ: Координаты вектора параллельного плоскости

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть Координаты вектора параллельного плоскости— вектор, лежащий на прямой m (или параллельный ей), Координаты вектора параллельного плоскости— нормаль к плоскости α.

Координаты вектора параллельного плоскости

Находим синус угла между прямой m и плоскостью α по формуле:

Координаты вектора параллельного плоскости

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Находим координаты вектора Координаты вектора параллельного плоскости.

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор Координаты вектора параллельного плоскости.

Найдем угол между прямой и плоскостью:

Координаты вектора параллельного плоскости

Ответ: Координаты вектора параллельного плоскости

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

Координаты вектора параллельного плоскости

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = Координаты вектора параллельного плоскости, AD = Координаты вектора параллельного плоскости. Высота параллелепипеда AA1 = Координаты вектора параллельного плоскости. Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Координаты вектора параллельного плоскости

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Координаты вектора параллельного плоскостиКоординаты вектора параллельного плоскости

Решим эту систему. Выберем Координаты вектора параллельного плоскости

Тогда Координаты вектора параллельного плоскости

Уравнение плоскости A1DB имеет вид:

Координаты вектора параллельного плоскости

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

Координаты вектора параллельного плоскости

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Видео:Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

Уравнения прямых и плоскостей

Видео:9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора

Поверхности и линии первого порядка.

Уравнение первой степени, или линейное уравнение, связывающее координаты точки в пространстве, имеет вид
$$
Ax+By+Cz+D = 0,label
$$
причем предполагается, что коэффициенты при переменных не равны нулю одновременно, то есть (A^+B^+C^ neq 0). Аналогично, линейное уравнение, связывающее координаты точки на плоскости, — это уравнение
$$
Ax+By+C = 0,label
$$
при условии (A^+B^ neq 0).

В школьном курсе доказывается, что в декартовой прямоугольной системе координат уравнения eqref и eqref определяют соответственно плоскость и прямую линию на плоскости. Из теорем о порядке алгебраических линий и поверхностей следует, что то же самое верно и в общей декартовой системе координат. Точнее, имеют место следующие теоремы.

В общей декартовой системе координат в пространстве каждая плоскость может быть задана линейным уравнением
$$
Ax+By+Cz+D = 0.nonumber
$$
Обратно, каждое линейное уравнение в общей декартовой системе координат определяет плоскость.

В общей декартовой системе координат на плоскости каждая прямая может быть задана линейным уравнением
$$
Ax+By+C = 0,nonumber
$$
Обратно, каждое линейное уравнение в общей декартовой системе координат на плоскости определяет прямую.

Эти теоремы полностью решают вопрос об уравнениях плоскости и прямой линии на плоскости. Однако ввиду важности этих уравнений мы рассмотрим их в других формах. При этом будут получены независимые доказательства теорем этого пункта.

Видео:Координаты вектора. Векторы на координатной плоскости. Геометрия 8-9 классСкачать

Координаты вектора. Векторы на координатной плоскости. Геометрия 8-9 класс

Параметрические уравнения прямой и плоскости.

Мы будем предполагать, что задана декартова система координат в пространстве (или на плоскости, если мы изучаем прямую в планиметрии). Это, в частности, означает, что каждой точке сопоставлен ее радиус-вектор относительно начала координат.

Координаты вектора параллельного плоскостиРис. 6.1

Вектор (overrightarrow<M_M> = boldsymbol-boldsymbol_), начало которого лежит на прямой, параллелен прямой тогда и только тогда, когда (M) также лежит на прямой. В этом и только этом случае для точки (M) найдется такое число (t), что
$$
boldsymbol-boldsymbol_ = tboldsymbol.label
$$

Наоборот, какое бы число мы ни подставили в формулу eqref в качестве (t), вектор (boldsymbol) в этой формуле определит некоторую точку на прямой.

Уравнение eqref называется векторным параметрическим уравнением прямой, а переменная величина (t), принимающая любые вещественные значения, называется параметром.

Векторное параметрическое уравнение выглядит одинаково и в планиметрии, и в стереометрии, но при разложении по базису оно сводится к двум или трем скалярным уравнениям, смотря по тому, сколько векторов составляют базис.

Получим теперь параметрические уравнения плоскости. Обозначим через (boldsymbol

) и (boldsymbol) ее направляющие векторы, а через (boldsymbol_) — радиус-вектор ее начальной точки (M_). Пусть точка (M) с радиус-вектором (boldsymbol) — произвольная точка пространства (рис. 6.2).

Координаты вектора параллельного плоскостиРис. 6.2

Вектор (overrightarrow<M_M> = boldsymbol-boldsymbol_), начало которого лежит на плоскости, параллелен ей тогда и только тогда, когда его конец (M) также лежит на плоскости. Так как (boldsymbol

) и (boldsymbol) не коллинеарны, в этом и только этом случае (boldsymbol-boldsymbol_) может быть по ним разложен. Поэтому, если точка (M) лежит в плоскости (и только в этом случае), найдутся такие числа (t_) и (t_), что
$$
boldsymbol-boldsymbol_ = t_boldsymbol

+t_boldsymbol.label
$$

Это уравнение называется параметрическим уравнением плоскости. Каждой точке плоскости оно сопоставляет значения двух параметров (t_) и (t_). Наоборот, какие бы числа мы ни подставили как значения (t_) и (t_), уравнение eqref определит некоторую точку плоскости.

Пусть ((x, y, z)) и ((x_, y_, z_)) — координаты точек (M) и (M_) соответственно, а векторы (boldsymbol

) и (boldsymbol) имеют компоненты ((p_, p_, p_)) и ((q_, q_, q_)). Тогда, раскладывая по базису обе части уравнения eqref, мы получим параметрические уравнения плоскости
$$
x-x_ = t_p_+t_q_, y-y_ = t_p_+t_q_, z-z_ = t_p_+t_q_.label
$$

Отметим, что начальная точка и направляющий вектор прямой образуют на ней ее внутреннюю декартову систему координат. Значение параметра (t), соответствующее какой-то точке, является координатой этой точки во внутренней системе координат. Точно так же на плоскости начальная точка и направляющие векторы составляют внутреннюю систему координат, а значения параметров, соответствующие точке, — это ее координаты в этой системе.

Видео:КООРДИНАТЫ ВЕКТОРА В ПРОСТРАНСТВЕ решение задачСкачать

КООРДИНАТЫ ВЕКТОРА В ПРОСТРАНСТВЕ решение задач

Прямая линия на плоскости.

Поэтому мы можем сформулировать следующее утверждение.

В любой декартовой системе координат на плоскости уравнение прямой с начальной точкой (M_(x_, y_)) и направляющим вектором (boldsymbol(a_, a_)) может быть записано в виде eqref.

Уравнение eqref линейное. Действительно, после преобразования оно принимает вид (a_x-a_y+(a_y_-a_x_) = 0), то есть (Ax+By+C = 0), где (A = a_), (B = -a_) и (C = a_y_-a_x_).

Вектор с координатами ((-B, A)) можно принять за направляющий вектор прямой с уравнением eqref в общей декартовой системе координат, а точку eqref за начальную точку.

Если система координат декартова прямоугольная, то вектор (boldsymbol(A, B)) перпендикулярен прямой с уравнением eqref.

Действительно, в этом случае ((boldsymbol, boldsymbol) = -BA+AB = 0).

Пусть в уравнении прямой (Ax+By+C = 0) коэффициент (B) отличен от нуля. Это означает, что отлична от нуля первая компонента направляющего вектора, и прямая не параллельна оси ординат. В этом случае уравнение прямой можно представить в виде
$$
y = kx+b,label
$$
где (k = -A/B), а (b = -C/B). Мы видим, что к равно отношению компонент направляющего вектора: (k = a_/a_) (рис. 6.3).

Координаты вектора параллельного плоскостиРис. 6.3. k=-1. Прямая y=-x+1/2

Отношение компонент направляющего вектора (a_/a_) называется угловым коэффициентом прямой.

Угловой коэффициент прямой в декартовой прямоугольной системе координат равен тангенсу угла, который прямая образует с осью абсцисс. Угол этот отсчитывается от оси абсцисс в направлении кратчайшего поворота от (boldsymbol_) к (boldsymbol_) (рис. 6.4).

Координаты вектора параллельного плоскостиРис. 6.4. (k=operatornamevarphi = -1). Прямая (y=-x+1/2)

Положив (x = 0) в уравнении eqref, получаем (y = b). Это означает, что свободный член уравнения (b) является ординатой точки пересечения прямой с осью ординат.

Если же в уравнении прямой (B = 0) и ее уравнение нельзя представить в виде eqref, то обязательно (A neq 0). В этом случае прямая параллельна оси ординат и ее уравнению можно придать вид (x = x_), где (x_ = -C/A) — абсцисса точки пересечения прямой с осью абсцисс.

Видео:Координаты на плоскости и в пространстве. Вебинар | МатематикаСкачать

Координаты на плоскости и в пространстве. Вебинар | Математика

Векторные уравнения плоскости и прямой.

Параметрическое уравнение плоскости утверждает, что точка (M) лежит на плоскости тогда и только тогда, когда разность ее радиус-вектора и радиус-вектора начальной точки (M_) компланарна направляющим векторам (boldsymbol

) и (boldsymbol). Эту компланарность можно выразить и равенством
$$
(boldsymbol-boldsymbol_, boldsymbol

, boldsymbol) = 0.label
$$
Вектор (boldsymbol = [boldsymbol

, boldsymbol]) — ненулевой вектор, перпендикулярный плоскости. Используя его, мы можем записать уравнение eqref в виде
$$
(boldsymbol-boldsymbol_, boldsymbol) = 0.label
$$

Уравнения eqref и eqref называют векторными уравнениями плоскости. Им можно придать форму, в которую не входит радиус-вектор начальной точки. Например, положив в eqref (D = -(boldsymbol_, boldsymbol)), получим
$$
(boldsymbol, boldsymbol)+D = 0.label
$$

Для прямой на плоскости можно также написать векторные уравнения, аналогичные eqref и eqref,
$$
(boldsymbol-boldsymbol_, boldsymbol) = 0 mbox (boldsymbol, boldsymbol)+C = 0.nonumber
$$
Первое из них выражает тот факт, что вектор (boldsymbol-boldsymbol_) перпендикулярен ненулевому вектору (boldsymbol), перпендикулярному направляющему вектору (boldsymbol), и потому коллинеарен (boldsymbol).

Пусть (x, y, z) — компоненты вектора (boldsymbol) в общей декартовой системе координат. Тогда скалярное произведение ((boldsymbol-boldsymbol_, boldsymbol)) при (boldsymbol neq 0) записывается линейным многочленом (Ax+By+Cz+D), где ((A^+B^+C^ neq 0)).

Обратно, для любого линейного многочлена найдутся такие векторы (boldsymbol_) и (boldsymbol neq 0), что в заданной общей декартовой системе координат (Ax+By+Cz+D = (boldsymbol-boldsymbol_, boldsymbol)).

Первая часть предложения очевидна: подставим разложение вектора (boldsymbol) по базису в данное скалярное произведение:
$$
(xboldsymbol_+yboldsymbol_+zboldsymbol_-boldsymbol_, boldsymbol),nonumber
$$
раскроем скобки и получим многочлен (Ax+By+Cz+D), в котором (D = -(boldsymbol_, boldsymbol)) и
$$
A = (boldsymbol_, boldsymbol), B = (boldsymbol_, boldsymbol), C = (boldsymbol_, boldsymbol)label
$$
(A), (B) и (C) одновременно не равны нулю, так как ненулевой вектор (boldsymbol) не может быть ортогонален всем векторам базиса.

Для доказательства обратного утверждения найдем сначала вектор (boldsymbol) из равенств eqref, считая (A), (B) и (C) заданными. Из ранее доказанного утверждения 10 следует, что
$$
boldsymbol = frac<A[boldsymbol_, boldsymbol_]><(boldsymbol_, boldsymbol_, boldsymbol_)>+frac<B[boldsymbol_, boldsymbol_]><(boldsymbol_, boldsymbol_, boldsymbol_)>+frac<C[boldsymbol_, boldsymbol_]><(boldsymbol_, boldsymbol_, boldsymbol_)>.label
$$

Вектор (boldsymbol_) должен удовлетворять условию (D = -(boldsymbol_, boldsymbol)). Один из таких векторов можно найти в виде (boldsymbol_ = lambda boldsymbol). Подставляя, видим, что (-lambda(boldsymbol, boldsymbol) = D), откуда (boldsymbol_ = -Dboldsymbol/|boldsymbol|^).

Итак, мы нашли векторы (boldsymbol) и (boldsymbol_) такие, что линейный многочлен записывается в виде
$$
x(boldsymbol_, boldsymbol)+y(boldsymbol_, boldsymbol)+z(boldsymbol_, boldsymbol)-(boldsymbol_, boldsymbol),nonumber
$$
который совпадает с требуемым ((boldsymbol-boldsymbol_, boldsymbol)).

Если система координат декартова прямоугольная, то вектор с компонентами (A), (B), (C) является нормальным вектором для плоскости с уравнением (Ax+By+Cz+D = 0).

Это сразу вытекает из формул eqref и доказанного ранее утверждения о нахождении компонент в ортогональном базисе.

Любые два неколлинеарных вектора, удовлетворяющие уравнению eqref, можно принять за направляющие векторы плоскости.

Утверждение 5 нетрудно доказать и непосредственно, рассматривая координаты вектора, параллельного плоскости, как разности соответствующих координат двух точек, лежащих в плоскости.

Все, сказанное о плоскостях, почти без изменений может быть сказано и о прямых на плоскости. В частности, верно следующее утверждение.

Действительно, (alpha_, alpha_), должны быть пропорциональны компонентам — (B), (A) направляющего вектора прямой.

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Параллельность плоскостей и прямых на плоскости.

Ниже, говоря о параллельных прямых или плоскостях, мы будем считать, что параллельные плоскости (или прямые) не обязательно различны, то есть что плоскость (прямая) параллельна самой себе.

Прямые линии, задаваемые в общей декартовой системе координат уравнениями
$$
Ax+By+C = 0, A_x+B_y+C_ = 0,nonumber
$$
параллельны тогда и только тогда, когда соответствующие коэффициенты в их уравнениях пропорциональны, то есть существует такое число (lambda), что
$$
A_ = lambda A, B_ = lambda B.label
$$

Прямые совпадают в том и только том случае, когда их уравнения пропорциональны, то есть помимо уравнения eqref выполнено (с тем же (lambda)) равенство
$$
C_ = lambda C.label
$$

Первая часть предложения прямо следует из того, что векторы с компонентами ((-B, A)) и ((-B_, A_)) — направляющие векторы прямых.

Докажем вторую часть. В равенствах eqref и eqref (lambda neq 0), так как коэффициенты в уравнении прямой одновременно нулю не равны. Поэтому, если эти равенства выполнены, уравнения эквивалентны и определяют одну и ту же прямую.

Обратно, пусть прямые параллельны. В силу первой части предложения их уравнения должны иметь вид (Ax+By+C = 0) и (lambda(Ax+By)+C_ = 0) при некотором (lambda). Если, кроме того, существует общая точка (M_(x_, y_)) обеих прямых, то (Ax_+By_+C = 0) и (lambda(Ax_+By_)+C_ = 0). Вычитая одно равенство из другого, получаем (C_ = lambda C), как и требовалось.

Плоскости, задаваемые в общей декартовой системе координат уравнениями
$$
Ax+By+Cz+D = 0, A_x+B_y+C_z+D_ = 0nonumber
$$
параллельны тогда и только тогда, когда соответствующие коэффициенты в их уравнениях пропорциональны, то есть существует такое число (lambda), что
$$
A_ = lambda A, B_ = lambda B, C_ = lambda C.label
$$

Плоскости совпадают в том и только том случае, когда их уравнения пропорциональны, то есть помимо уравнений eqref выполнено (с тем же (lambda)) равенство
$$
D_ = lambda D.label
$$

Если плоскости параллельны, то их нормальные векторы (boldsymbol) и (boldsymbol_) коллинеарны, и существует такое число (lambda), что (boldsymbol_ = lambdaboldsymbol). В силу уравнений eqref (A_ = (boldsymbol_, boldsymbol_) = lambda(boldsymbol_, boldsymbol) = lambda A). Аналогично доказываются и остальные равенства eqref. Обратно, если равенства eqref выполнены, то из формулы eqref следует, что (boldsymbol_ = lambdaboldsymbol). Это доказывает первую часть предложения. Вторая его часть доказывается так же, как вторая часть предложения 7.

Условия eqref выражают не что иное, как коллинеарность векторов с компонентами ((A, B)) и ((A_, B_)). Точно так же условия eqref означают коллинеарность векторов с компонентами ((A, B, C)) и ((A_, B_, C_)). Поэтому согласно ранее доказанным этому и этому утверждениям условие параллельности прямых на плоскости можно записать в виде
$$
begin
A& B\
A_& B_
end
= 0,label
$$
а условие параллельности плоскостей — в виде
$$
begin
B& C\
B_& C_
end =
begin
C& A\
C_& A_
end =
begin
A& B\
A_& B_
end
= 0.label
$$

Утверждению 7 можно придать чисто алгебраическую формулировку, если учесть, что координаты точки пересечения прямых — это решение системы, составленной из их уравнений.

При условии eqref система линейных уравнений
$$
Ax+By+C = 0, A_x+B_y+C_ = 0,nonumber
$$
не имеет решений или имеет бесконечно много решений (в зависимости от (C) и (C_). В последнем случае система равносильна одному из составляющих ее уравнений. Если же
$$
begin
A& B\
A_& B_
end
neq 0.nonumber
$$
то при любых (C) и (C_) система имеет единственное решение ((x, y)).

Видео:Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Аналитическая геометрия, 5 урок, Уравнение плоскости

Уравнения прямой в пространстве.

Прямая линия в пространстве может быть задана как пересечение двух плоскостей и, следовательно, в общей декартовой системе координат определяется системой уравнений вида
$$
left<begin
Ax+By+Cz+D = 0,\
A_x+B_y+C_z+D_ = 0.
endright.label
$$
Пересечение плоскостей — прямая линия тогда и только тогда, когда они не параллельны, что согласно eqref означает, что хоть один из детерминантов отличен от нуля:
$$
begin
B& C\
B_& C_
end^ +
begin
C& A\
C_& A_
end^ +
begin
A& B\
A_& B_
end^
neq 0.label
$$

Разумеется, систему eqref можно заменить на любую, ей эквивалентную. При этом прямая будет представлена как пересечение двух других проходящих через нее плоскостей.

Вспомним параметрические уравнения прямой eqref. Допустим, что в них ни одна из компонент направляющего вектора не равна нулю. Тогда
$$
t = frac<x-x_><alpha_>, t = frac<y-y_><alpha_>, t = frac<z-z_><alpha_>,nonumber
$$
и мы получаем два равенства
$$
frac<y-y_><alpha_> = frac<z-z_><alpha_>, frac<x-x_><alpha_> = frac<z-z_><alpha_>,label
$$
или, в более симметричном виде,
$$
frac<x-x_><alpha_> = frac<y-y_><alpha_> = frac<z-z_><alpha_>,label
$$
Уравнения eqref представляют прямую как линию пересечения двух плоскостей, первая из которых параллельна оси абсцисс (в ее уравнение не входит переменная (x)), а вторая параллельна оси ординат.

Если обращается в нуль одна из компонент направляющего вектора, например, (alpha_), то уравнения прямой принимают вид
$$
x = x_, frac<y-y_><alpha_> = frac<z-z_><alpha_>,label
$$
Эта прямая лежит в плоскости (x = x_) и, следовательно, параллельна плоскости (x = 0). Аналогично пишутся уравнения прямой, если в нуль обращается не (alpha_), а другая компонента.

Когда равны нулю две компоненты направляющего вектора, например, (alpha_) и (alpha_), то прямая имеет уравнения
$$
x = x_, y = y_.label
$$
Такая прямая параллельна одной из осей координат, в нашем случае — оси аппликат.

Важно уметь находить начальную точку и направляющий вектор прямой, заданной системой линейных уравнений eqref. По условию eqref один из детерминантов отличен от нуля. Допустим для определенности, что (AB_-A_B neq 0). В силу утверждения 9 при любом фиксированном (z) система уравнений будет иметь единственное решение ((x, y)), в котором (x) и (y), разумеется, зависят от (z). Они — линейные многочлены от (z): (x = alpha_z+beta_), (y = alpha_z+beta_).

Не будем доказывать этого, хотя это и не трудно сделать. Для ясности, заменяя (z) на (t), получаем параметрические уравнения прямой
$$
x = alpha_t+beta_, y = alpha_t+beta_, z = t.nonumber
$$

Первые две координаты начальной точки прямой (M_(beta_, beta_, 0)) можно получить, решая систему eqref при значении (z = 0).

Из параметрических уравнений видно, что в этом случае направляющий вектор имеет координаты ((alpha_, alpha_, 1)). Найдем его компоненты в общем виде. Если система координат декартова прямоугольная, векторы с компонентами ((A, B, C)) и (A_, B_, C_) перпендикулярны соответствующим плоскостям, а потому их векторное произведение параллельно прямой eqref, по которой плоскости пересекаются. Вычисляя векторное произведение в ортонормированном базисе, мы получаем компоненты направляющего вектора
$$
begin
B& C\
B_& C_
end,
begin
C& A\
C_& A_
end,
begin
A& B\
A_& B_
end.label
$$

Вектор с компонентами eqref есть направляющий вектор прямой с уравнениями eqref, какова бы ни была декартова система координат.

Согласно утверждению 5 каждый ненулевой вектор, компоненты которого ((alpha_, alpha_, alpha_)) удовлетворяют уравнению (Aalpha_+Balpha_+Calpha_ = 0), параллелен плоскости с уравнением (Ax+By+Cz+D = 0). Если, кроме того, он удовлетворяет уравнению (A_alpha_+B_alpha_+C_alpha_ = 0), то он параллелен и второй плоскости, то есть может быть принят за направляющий вектор прямой. Вектор с компонентами eqref ненулевой в силу неравенства eqref. Непосредственно легко проверить, что его компоненты удовлетворяют обоим написанным выше условиям. На этом доказательство заканчивается.

🎬 Видео

Видеоурок "Преобразование координат"Скачать

Видеоурок "Преобразование координат"

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

11 класс, 1 урок, Прямоугольная система координат в пространствеСкачать

11 класс, 1 урок, Прямоугольная система координат в пространстве

Координаты в новом базисеСкачать

Координаты в новом базисе

90. Координаты вектораСкачать

90. Координаты вектора

Профильный ЕГЭ 2024. Векторы. Координатная плоскость. Задача 2Скачать

Профильный ЕГЭ 2024. Векторы. Координатная плоскость. Задача 2

Уравнение плоскости через 2 точки параллельно векторуСкачать

Уравнение плоскости через 2 точки параллельно вектору
Поделиться или сохранить к себе: