Конус это тело которое состоит из окружности точки

Конус это тело которое состоит из окружности точки

Ключевые слова: конус, фигура вращения, ось симметрии, ось вращения, образующая, высота конуса

Конус это тело которое состоит из окружности точки

Конусом называется тело. которое состоит из круга — основание конуса,
точки, не лежащей в плоскости этого круга — вершины конуса,
и всех отрезков, соединяющих вершину конуса с точками основания.
Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса.

Видео:2 3 проекция точки на конусеСкачать

2 3 проекция точки на конусе

Геометрические тела. Конус.

Конус — геометрическое тело в евклидовом пространстве, которое можно получить путем объединения каждого луча, который исходит из одной точки (вершина конуса) и которые проходят через плоскую поверхность.

Бывает, конусом называется часть тела, которая имеет ограниченный объём и которая получена путем объединения каждого отрезка, которые соединяют вершину и точки плоской поверхности. Последняя, в таком случае, является основанием конуса, а конус называется опирающимся на данное основание.

Когда основание конуса является многоугольником – это уже пирамида.

Круговой конус — это тело, состоящее из круга (основание конуса), точки, которая не лежит в плоскости этого круга (вершина конуса и всех отрезков, которые соединяют вершину конуса с точками основания).

Отрезки, которые соединяют вершину конуса и точки окружности основания, называют образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус это тело которое состоит из окружности точки

Прямой конус – это конус, в котором прямая, которая соединяет вершину конуса и центр основания, перпендикулярна плоскости основания.

Прямой круговой конус – это тело, которое получено вращением прямоугольного треугольника вокруг его катета как оси.

Высота конуса – это перпендикуляр, который опущен из вершины конуса на плоскость основания. Основание высоты в прямом конусе совпадает с центром основания.

Ось прямого кругового конуса – это прямая, которая содержит его высоту.

Сечение конуса плоскостью, который проходит через вершину конуса – это равнобедренный треугольник, боковые стороны этого треугольника являются образующими конуса.

Конус это тело которое состоит из окружности точкиКонус это тело которое состоит из окружности точки

Равнобедренным треугольником оказывается и осевое сечение конуса. Это сечение, проходящее через ось конуса.

Плоскость, которая параллельна основанию конуса и которая пересекает конус, отсекает от него конус меньшего размера. Оставшаяся часть является усеченным конусом.

Конус это тело которое состоит из окружности точкиКонус это тело которое состоит из окружности точки

Пирамида, вписанная в конус, это пирамида, у которой основание является многоугольником, вписанным в окружность основания конуса, а его вершина — это вершина конуса. Боковые ребра пирамиды, которая вписана в конус, становятся образующими конуса.

Касательная плоскость к конусу — это плоскость, которая проходит через образующую конуса и которая перпендикулярна плоскости осевого сечения, содержащей эту образующую.

Конус это тело которое состоит из окружности точкиКонус это тело которое состоит из окружности точки

Пирамида, описанная около конуса это пирамида, у которой основанием является многоугольник, который описан около основания конуса, а вершина совпадает с вершиной конуса. Плоскости боковых граней описанной пирамиды — это касательные плоскости конуса.

Площадь боковой поверхности правильной n-угольной пирамиды, вписанной в конус:

где Pn – периметр основания пирамиды, а ln — апофема.

При неограниченном увеличении n периметр основания Pn неограниченно приближается к длине С окружности основания конуса, а апофема ln — к длине l образующей. Значит, боковая поверхность пирамиды неограниченно приближается к ½Cl. Поэтому величину ½ Cl принимают как площадь боковой поверхности конуса.

То есть, площадь боковой поверхности конуса определяют с помощью формулы:

где R — радиус основания конуса, а l — длина образующей.

Конус это тело которое состоит из окружности точкиКонус это тело которое состоит из окружности точки

По тому же принципу: для площади боковой поверхности усеченного конуса с радиусами оснований R1, R2 и образующей l получаем такую формулу:

Прямой и косой круговой конусы с равным основанием и высотой. Эти тела обладают одинаковым объёмом:

Конус это тело которое состоит из окружности точки

Видео:Конус. 11 класс.Скачать

Конус. 11 класс.

Свойства конуса.

  • Когда площадь основания имеет предел, значит, объём конуса тоже имеет предел и равен третьей части произведения высоты на площадь основания.

Конус это тело которое состоит из окружности точки

где S — площадь основания, H — высота.

Т.о., каждый конус, который опирается на это основание и имеющие вершину, которая находится на плоскости, параллельной основанию, имеют равный объём, так как их высоты одинаковые.

  • Центр тяжести каждого конуса с объёмом, имеющим предел, находится на четверти высоты от основания.
  • Телесный угол при вершине прямого кругового конуса можно выразить такой формулой:

Конус это тело которое состоит из окружности точки

где α — угол раствора конуса.

  • Площадь боковой поверхности такого конуса, формула:

а полная площадь поверхности (то есть сумма площадей боковой поверхности и основания), формула:

где R — радиус основания, l — длина образующей.

Конус это тело которое состоит из окружности точки

  • Для усечённого конуса (не только прямого или кругового) объём, формула:

где S1 и S2 — площадь верхнего и нижнего оснований,

h и H — расстояния от плоскости верхнего и нижнего основания до вершины.

  • Пересечение плоскости с прямым круговым конусом — это один из конических сечений.

Видео:Геометрия 11 класс (Урок№7 - Конус.)Скачать

Геометрия 11 класс (Урок№7 - Конус.)

Конус это тело которое состоит из окружности точки

Конус это тело которое состоит из окружности точки

Так как все образующие конуса равны, то его осевым сечением является равнобедренный треугольник, боковыми сторонами которого являются образующие конуса, а основанием — диаметр конуса. При этом все осевые сечения конуса — равные равнобедренные треугольники . На рисунке 168 осевым сечением конуса является треугольник ABP ( АР = ВР ). Угол АPВ называют углом при вершине осевого сечения конуса .

Конус, в осевом сечении которого правильный треугольник, называется равносторонним конусом.

Если секущая плоскость проходит через вершину конуса, пересекает конус, но не проходит через его ось, то в сечении конуса также получается равнобедренный треугольник (см. рис. 168: △ DCP ).

Так как конус — тело вращения, то любое сечение конуса плоскостью, перпендикулярной его оси (т. е. параллельной основанию конуса), есть круг, а сечение боковой поверхности конуса такой плоскостью — окружность этого круга; центром круга (окружности) является точка пересечения оси конуса и секущей плоскости (рис. 169).

Если секущая плоскость не параллельна плоскости основания конуса и не пересекает основание, то сечением боковой поверхности конуса такой плоскостью является эллипс (рис. 170). Поэтому эллипс называют коническим сечением .

Конус это тело которое состоит из окружности точки

Конус это тело которое состоит из окружности точкиЕсли сечением цилиндрической поверхности плоскостью может быть либо окружность, либо эллипс, либо две параллельные прямые, то сечением конической поверхности плоскостью может быть либо окружность (секущая плоскость перпендикулярна оси конической поверхности вращения и не проходит через её вершину, рис. 171, a ), либо эллипс (секущая плоскость не перпендикулярна оси конической поверхности и пересекает все её образующие, рис. 171, б ), либо парабола (секущая плоскость параллельна только одной образующей конической поверхности, рис. 171, в ), либо гипербола (секущая плоскость параллельна оси конической поверхности, рис. 171, г ), либо пара пересекающихся прямых (секущая плоскость проходит через вершину конической поверхности, рис. 171, д ). Поэтому невырожденные кривые второго порядка — окружность, эллипс, параболу и гиперболу называют коническими сечениями или коротко — кониками .

О конических сечениях можно прочитать в очерках «Элементарная геометрия», «Проективная геометрия» в конце этой книги. Конус это тело которое состоит из окружности точки

 ЗАДАЧА (3.047). Высота конуса равна радиусу R его основания. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу: а) в 60 ° ; б) в 90 ° . Найти площадь сечения.

Конус это тело которое состоит из окружности точки

Решени е. Рассмотрим случай а). Пусть плоскость α пересекает поверхность конуса с вершиной Р по образующим РА и РВ (рис. 172); △ АВР — искомое сечение. Найдём площадь этого сечения.

Хорда АВ окружности основания стягивает дугу в 60 ° , значит, △ AOB — правильный и АВ = R .

Если точка С — середина стороны АB, то отрезок PC — высота треугольника АВР. Поэтому S △ ABP = Конус это тело которое состоит из окружности точкиАВ • РC. Имеем: ОР = R (по условию); в △ A OB : ОС = Конус это тело которое состоит из окружности точки; в △ ОСР : CP = Конус это тело которое состоит из окружности точки= Конус это тело которое состоит из окружности точки.

Тогда S △ ABP = Конус это тело которое состоит из окружности точкиАВ • РС = Конус это тело которое состоит из окружности точки.

Ответ: а) Конус это тело которое состоит из окружности точки.

18.3. Касательная плоскость к конусу

Определение. Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса перпендикулярно осевому сечению, проведённому через эту образующую.

Конус это тело которое состоит из окружности точки

Говорят, что плоскость α касается конуса по образующей РА (рис. 173): каждая точка образующей РА является точкой касания плоскости α и данного конуса.

Конус это тело которое состоит из окружности точки

Через любую точку боковой поверхности конуса проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности конуса можно провести лишь одну плоскость, касательную к данному конусу в этой точке.

18.4. Изображение конуса

Конус это тело которое состоит из окружности точки

Для изображения конуса достаточно построить: 1) эллипс, изображающий окружность основания конуса (рис. 174); 2) центр О этого эллипса; 3) отрезок ОР, изображающий высоту конуса; 4) касательные прямые РА и PB из точки Р к эллипсу (их проводят с помощью линейки на глаз).

Для достижения наглядности изображения невидимые линии изображают штрихами.

Необходимо заметить, что отрезок АВ, соединяющий точки касания образующих и окружности основания конуса, ни в коем случае не является диаметром основания конуса, т. е. этот отрезок не содержит центра О эллипса. Следовательно, △ АBP — не осевое сечение конуса. Осевым сечением конуса является △ ACP, где отрезок AC проходит через точку О, но образующая PC не является касательной к окружности основания.

18.5. Развёртка и площадь поверхности конуса

Пусть l — длина образующей, R — радиус основания конуса с вершиной Р .

Конус это тело которое состоит из окружности точки

Конус это тело которое состоит из окружности точки

Поверхность конуса состоит из боковой поверхности конуса и его основания. Если эту поверхность разрезать по одной из образующих, например по образующей PA (рис. 175), и по окружности основания, затем боковую поверхность конуса развернуть на плоскости (рис. 176, a ), то получим развёртку поверхности конуса (рис. 176, б ), состоящую из: а) кругового сектора, радиус которого равен образующей l конуса, а длина дуги сектора равна длине окружности основания конуса; б) круга, радиус которого равен радиусу R основания конуса. Угол сектора развёртки боковой поверхности конуса называют углом развёртки конуса ; его численная величина равна отношению длины окружности основания конуса к его образующей (радиусу сектора развёртки):

α = Конус это тело которое состоит из окружности точки.

За площадь боковой поверхности конуса принимается площадь её развёртки. Выразим площадь боковой поверхности конуса через длину l его образующей и радиус R основания.

Площадь боковой поверхности — площадь кругового сектора радиуса длины l — вычисляется по формуле

S бок = Конус это тело которое состоит из окружности точкиα • l 2 , (1)

где α — величина угла (в радианах) сектора — развёртки. Учитывая, что α = Конус это тело которое состоит из окружности точки, получаем:

Таким образом, доказана следующая теорема.

Конус это тело которое состоит из окружности точки

Теорема 27. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую. ▼

Площадь полной поверхности конуса равна сумме площадей его боковой поверхности и основания, т. е.

S кон = π Rl + π R 2 . (3)

Конус это тело которое состоит из окружности точки

Следствие. Пусть конус образован вращением пря м оугольного треугольника ABC вокруг катета АС (рис. 177). Тогда S бок = π • BC • АВ. Если D — середина отрезка АВ, то AB = 2 AD, поэтому

S бок = 2 π ВС • AD. (4)

Конус это тело которое состоит из окружности точки

Проведём DE ⟂ АB ( E ∈ l = AС ) . Из подобия прямоугольных треугольников ADE и ACB (у них общий угол А ) имеем

Конус это тело которое состоит из окружности точки= Конус это тело которое состоит из окружности точки⇒ BC • AD = DE • АС. (5)

Тогда соотношение (4) принимает вид

S бок = (2 π • DE ) • AC, (6)

т. е. площадь боковой поверхности конуса равна произведению высоты конуса на длину окружности, радиус которой равен длине серединного перпендикуляра, проведённого из точки на оси конуса к его образующей.

Это следствие будет использовано в п. 19.7.

18.6. Свойства параллельных сечений конуса

Конус это тело которое состоит из окружности точки Конус это тело которое состоит из окружности точки

Теоремa 28. Если конус пересечён плоскостью, параллельной основанию, то: 1) все образующие и высота конуса делятся этой плоскостью на пропорциональные части; 2) в сечении получается круг; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Конус это тело которое состоит из окружности точки

Доказательств о. 1) Пусть конус с вершиной Р и основанием F пересечён плоскостью α , параллельной плоскости β основания конуса и расположенной между Р и β (рис. 178).

Проведём высоту РО конуса, где точка О — центр круга F. Так как РО ⟂ β , α || β , то α ⟂ РО. Значит, в сечении конуса плоскостью α получается круг с центром в точке O 1 = α ∩ РО. Обозначим этот круг F 1 .

Рассмотрим гомотетию Конус это тело которое состоит из окружности точкис центром P, при которой плоскость β основания данного конуса отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).

Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия Конус это тело которое состоит из окружности точкиотображает основание F конуса на его параллельное сечение — круг F 1 , при этом центр О основания отображается на центр О 1 круга F 1 (почему?). Кроме того, если РХ — произвольная образующая конуса, где Х — точка окружности основания, то при гомотетии Конус это тело которое состоит из окружности точкиточка X отображается на точку X 1 = РX ∩ α . Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:

Конус это тело которое состоит из окружности точки= Конус это тело которое состоит из окружности точки= k, (*)

где k — коэффициент гомотетии Конус это тело которое состоит из окружности точки, т. е. параллельное сечение конуса делит его образующие и высоту на пропорциональные части.

А поскольку гомотетия является подобием, то круг F 1 , являющийся параллельным сечением конуса, подобен его основанию.

Вследствие того что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии и k = PO 1 : Р О , где РO 1 и PO — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то

S сечен : S основ = k 2 = Конус это тело которое состоит из окружности точки: PO 2 .

18.7. Вписанные в конус и описанные около конуса пирамиды

Определение. Пирамида называется вписанной в конус, если у них вершина общая, а основание пирамиды вписано в основание конуса. В этом случае конус называется описанным около пирамиды.

Для построения изображения правильной пирамиды, вписанной в конус:

— строят изображение основания пирамиды — правильного многоугольника, вписанного в основание конуса;

— соединяют отрезками прямых вершину конуса с вершинами построенного многоугольника;

— выделяют видимые и невидимые (штрихами) линии изображаемых фигур.

На рисунках 179—182 изображена вписанная в конус пирамида, в основаниях которой лежит:

— прямоугольный треугольник (см. рис. 179);

🔍 Видео

Цилиндр, конус, шар, 6 классСкачать

Цилиндр, конус, шар, 6 класс

КОНУС. Проекции точек на его поверхности. Достроить недостающие проекции точек на трех плоскостях.Скачать

КОНУС. Проекции точек на его поверхности. Достроить недостающие проекции точек на трех плоскостях.

Решение задач на конусСкачать

Решение задач на конус

Усеченный конус. 11 класс.Скачать

Усеченный конус. 11 класс.

11 класс, 16 урок, Понятие конусаСкачать

11 класс, 16 урок, Понятие конуса

Конус с вырезомСкачать

Конус с вырезом

ЦИЛИНДР // КОНУС // ШАРСкачать

ЦИЛИНДР // КОНУС // ШАР

ГЕОМЕТРИЯ 11 класс: Конус Площадь конуса. Усеченный конусСкачать

ГЕОМЕТРИЯ 11 класс: Конус  Площадь конуса. Усеченный конус

11 класс, 18 урок, Усеченный конусСкачать

11 класс, 18 урок, Усеченный конус

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Самое важное про тела вращения: конус #математика #егэ #shortsСкачать

Самое важное про тела вращения: конус #математика #егэ #shorts

Конус. Урок 18. Геометрия 9 классСкачать

Конус. Урок 18. Геометрия 9 класс

Конус. Урок 8. Геометрия 11 классСкачать

Конус. Урок 8. Геометрия 11 класс

Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать

Построение линии пересечения поверхности конуса с проецирующей плоскостью

Часть 2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ. Блок 10. Конус. Урок 3. Сечение плоскостью под углом к основанию.Скачать

Часть 2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ. Блок 10. Конус. Урок 3. Сечение плоскостью под углом к основанию.

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать

Миникурс по геометрии. Куб, призма, цилиндр и конус
Поделиться или сохранить к себе: