Конспект по теме касательная к окружности 8 класс кратко

Конспект урока по геометрии в 8 классе по теме: «Касательная к окружности»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов

Сертификат и скидка на обучение каждому участнику

МБОУ СОШ №70 г. Липецка

Хохлова Наталья Александровна

Конспект урока по геометрии 8 класс.

Учебник: Геометрия: Учеб. для 7-9 кл. общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – 10-е изд. – М.: Просвещение, 2000

Тема: «Касательная к окружности».

Цели: 1) Образовательные: способствовать усвоению понятия касательной к окружности; закрепить взаимное расположение прямых и окружностей; формировать умение применять изученный материал при решении задач.

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

2) Воспитательные: способствовать развитию математической речи, способствовать развитию умение анализировать изучаемый материал; способствовать развитию самоконтроля.
3) Развивающие: формировать умения систематизировать, устанавливать связи ранее изученного с новым; формировать гибкость мышления и критичность.

Тип урока: урок изучения нового материала и первичного закрепления изученного.

Оборудование: Циркуль, треугольник, линейка , мультимедийный проектор, слайды.

Приветствие. Постановка целей урока: Ребята, этот урок мы посвятим изучению свойства касательной к окружности, научимся строить её.

Актуализация опорных знаний

Вспомните, чем мы занимались на прошлом уроке. (3 человека к доске)

Как могут взаимно располагаться прямая и окружность? (начертите)

Работа с классом.

Если d > r , , то прямая и окружность _____.

ЕКонспект по теме касательная к окружности 8 класс краткосли d r , то прямая и окружность _____.

Если d = r , , то прямая и окружность _____.

Изучение нового материала

Дадим определение касательной. Прямая, имеющая с окружностью одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Рассмотрим алгоритм построения касательной к окружности.

Дано: окружность, О — центр, А — лежит на окружности.

ПКонспект по теме касательная к окружности 8 класс краткоостроить касательную к окружности в точке А.

2. От точки А отложим О1А=ОА.

3.Из точек О1 и О проведём окружности, радиусом большим ОА.

4.Через точки пересечения окружностей проведём прямую а.

Прямая а будет касательной по определению.

Теорема 1. (свойство касательной)

Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Дано: а – касательная, О — центр, А – точка касания.

Доказательство: Пусть а- касательная к окружности, а┴ОА

ПКонспект по теме касательная к окружности 8 класс краткоредположим, что это не так. Тогда ОА – наклонная к а,так как перпендикуляр, проведенный из т. О к а, меньше наклонной ОА, тогда расстояние от центра окружности до а меньше радиуса. Следовательно, а и окружность имеют 2 общие точки. Но это противоречит условию: прямая а – касательная. Тогда а┴ОА.

Рассмотрим 2 касательные к окружности, которые пересекаются в одной точке. Полученные отрезки обладают следующим свойством:

АВ и АС – отрезки, проведенные из точки А.

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящие через эту точку и центр окружности.

Первичное закрепление изученного материала

Вспомним тему, которую мы изучили на прошлом уроке и решим задание.

1. d – расстояние от центра окружности радиуса r до прямой а. Каково взаимное расположение прямой а и окружности, если:

2. Через точку А окружности проведены касательная и хорда, равная радиусу окружности. Найти угол между ними.

3. ОВ=3см, ОА=6 см. Найдите АВ, АС, углы 3 и 4.

Что вы сегодня узнали на уроке? (что такое касательная, как построить касательную, доказали теорему)

Все ли было понятно или какие-то вопросы вызвали затруднения?

На следующем уроке мы продолжим изучение понятия касательной и докажем теорему, обратную к доказанной сегодня.

Запишите домашнее задание. Повторить материал по записям в тетради. В учебнике с 159-160. №633,634.

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Резработка урока геометрии в 8 классе по теме «Касательная к окружности» с презентацией
план-конспект урока по геометрии (8 класс) по теме

Конспект урока «Решение задач по теме «Взаимное расположение прямой и окружности. Касательная к окружности» — 8 класс

Учитель: Зайцева Галина Геннадиевна

Цели:

Обучающие: обобщить и систематизировать полученные знания по данной теме; повторить понятия касательной, точки касания, отрезков касательных, проведенных из одной точка; продолжить формировать умения использовать свойства касательной и ее признак при решении задач; повышать вычислительную культуру учащихся; выявить и ликвидировать ошибки и затруднения по изученной теме.

Развивающие: развивать умение пользоваться свойствами касательной и отрезками касательных в процессе решения задач; грамотную речь; развитие памяти; навыков самостоятельной работы и самооценки; умение анализировать, проводить обобщение.

Воспитывающие: воспитание умения работать в паре, в группе; взаимной ответственности за результаты учебного труда; прививать чувство самокритичности в оценке своей работы наряду с чувством уверенности в правильности ее выполнения; воспитание познавательного интереса к предмету.

Тип урока: урок обобщения и систематизации полученных знаний и выполнения практических работ.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Скачать:

ВложениеРазмер
Урок «Касательная к окружности»145 КБ
Презентация к уроку «Касательная к окружности»612.5 КБ

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Предварительный просмотр:

Конспект урока «Решение задач по теме «Взаимное расположение прямой и окружности. Касательная к окружности» — 8 класс

Учитель: Зайцева Галина Геннадиевна

Обучающие: обобщить и систематизировать полученные знания по данной теме; повторить понятия касательной, точки касания, отрезков касательных, проведенных из одной точка; продолжить формировать умения использовать свойства касательной и ее признак при решении задач; повышать вычислительную культуру учащихся; выявить и ликвидировать ошибки и затруднения по изученной теме.

Развивающие: развивать умение пользоваться свойствами касательной и отрезками касательных в процессе решения задач; грамотную речь; развитие памяти; навыков самостоятельной работы и самооценки; умение анализировать, проводить обобщение.

Воспитывающие: воспитание умения работать в паре, в группе; взаимной ответственности за результаты учебного труда; прививать чувство самокритичности в оценке своей работы наряду с чувством уверенности в правильности ее выполнения; воспитание познавательного интереса к предмету.

Тип урока: урок обобщения и систематизации полученных знаний и выполнения практических работ.

Оборудование: учебник « Геометрия. 7 – 9 классы. Атанасян Л.С., Бутузов В.Ф. и др.»; рабочие тетради; задания для самостоятельной работы; презентация MS Power Point ,ПК, экран, проектор.

— Здравствуйте, ребята, Садитесь. Сегодня на уроке мы обобщим и систематизируем знания, полученные при изучении темы «Касательная к окружности», продолжим совершенствовать навыки решения задач, развивать навыки самостоятельной работы.

  1. Актуализация опорных знаний.

— Прежде чем начать решать задачи, давайте вспомним теорию (слайд 2 – 5).

Учащиеся отвечают по желанию, при этом работают в парах.

1. Среди следующих утверждение укажите истинные.

Окружность и прямая имеют две общих точки, если :

  1. Расстояние от центра окружности до прямой не превосходит радиуса окружности;
  2. Расстояние от центра окружности до прямой меньше радиуса окружности;
  3. Расстояние от окружности до прямой меньше радиуса окружности;
  1. Окружность и прямая имеют одну общую точку, если….(R = S).

— Прямая является секущей по отношению к окружности, если она имеет

с окружностью общие точки.

— Прямая является секущей по отношению к окружности, если она пересекает окружность в двух точках.

— Прямая является секущей по отношению к окружности, если расстояние

от центра окружности до данной прямой не больше радиуса.

— теорему о свойстве касательной.

— теорему о свойстве отрезков касательных к окружности, проведенных из одной точки.

— теорему, обратную теореме о свойстве касательной.

Проверка домашнего задания: задача № 639 (слайд 6)

— Каково взаимное расположение касательной АВ и радиуса ОВ?

— Как найти катет АВ треугольника АОВ?

Решение задач на готовых чертежах. Работа в парах.

Слайд 7 – ответы: 1) ОВ = 5√ 2 (рис.647); 2) R = 5 (рис.648)

Слайд 8 – ответы: 3) угол ВОС = 120 0 (рис.649); 4) ОА = 10 (рис.650);

5) Р АВС = 34 (рис.651)

Решить самостоятельно задачу №84 из рабочей тетради с последующим обсуждением. Слайд 9.

Решить задачу №641, работаем в группах по 4 человека. Первые, решившие, записывают решение на доске. (Слайд 10).

Развитие навыков самостоятельной работы и самооценки.

— Ребята, вам предлагается выполнить самостоятельную работу (в двух вариантах). К первой задаче необходимо записать краткое решение; ко второй задаче – полное решение.

— Проверьте, пожалуйста, свои ответы, (слайд 11),поставьте оценки.

— Ребята, у кого были затруднения при выполнении заданий?

— Удалось ли преодолеть трудности?

— Что нужно повторить или выучить , чтобы не возникало таких трудностей?

— Посмотрите, пожалуйста, где применяется касательная к окружности в повседневной жизни (слайды 12 – 16)

Повторить п.68, 69; №№ 641, 645, 648 (по желанию)

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Касательная к окружности

Конспект по теме касательная к окружности 8 класс кратко

О чем эта статья:

Видео:Урок по теме ОПИСАННАЯ ОКРУЖНОСТЬ 8 классСкачать

Урок по теме ОПИСАННАЯ ОКРУЖНОСТЬ 8 класс

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Конспект по теме касательная к окружности 8 класс кратко

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Конспект по теме касательная к окружности 8 класс кратко

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Конспект по теме касательная к окружности 8 класс кратко

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Конспект по теме касательная к окружности 8 класс кратко

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Конспект по теме касательная к окружности 8 класс кратко

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Конспект по теме касательная к окружности 8 класс кратко

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Конспект по теме касательная к окружности 8 класс кратко

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Конспект по теме касательная к окружности 8 класс кратко

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Конспект по теме касательная к окружности 8 класс кратко

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Конспект по теме касательная к окружности 8 класс кратко

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Конспект по теме касательная к окружности 8 класс кратко

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Конспект по теме касательная к окружности 8 класс кратко

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

🎬 Видео

Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИСкачать

Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Урок по теме ВПИСАННАЯ ОКРУЖНОСТЬСкачать

Урок по теме ВПИСАННАЯ ОКРУЖНОСТЬ

Математика 8 класс. Касательная к окружностиСкачать

Математика 8 класс. Касательная к окружности

Математика это не ИсламСкачать

Математика это не Ислам

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

ВСЯ ГЕОМЕТРИЯ 8 КЛАСС ЗА 15 МИНУТ / АТАНАСЯН / К ОГЭСкачать

ВСЯ ГЕОМЕТРИЯ 8 КЛАСС ЗА 15 МИНУТ / АТАНАСЯН / К ОГЭ

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Построение касательной к окружностиСкачать

Построение касательной к окружности

ВСЯ ТЕОРИЯ по ГЕОМЕТРИИ ЗА 8 КЛАСС с примерамиСкачать

ВСЯ ТЕОРИЯ по ГЕОМЕТРИИ ЗА 8 КЛАСС с примерами

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия
Поделиться или сохранить к себе: