Коэффициент схемы для треугольника

Схемы соединений обмоток ТТ и реле

В данной статье речь пойдет о типовых схемах соединений обмоток трансформаторов тока (ТТ) и реле.

В трехфазных электрических сетях переменного тока всех классов напряжения ТТ для питания устройств РЗ устанавливаются в двух или в трех фазах: как правило, в сетях 6 и 10 кВ с малыми токами замыкания на землю в двух фазах (А и С), в сетях 35 кВ и обязательно в сетях 110 кВ и выше в трех фазах. Все три фазы оснащаются ТТ и в сетях напряжением до 1 кВ, если они работают с глухозаземленной нейтралью.

При выполнении токовых защит используются следующие четыре схемы соединения вторичных обмоток ТТ и токовых цепей реле тока [Л1, с.41]:

  • полная звезда (трехфазная, трехрелейная);
  • неполная звезда (двухфазная, двухрелейная);
  • неполная звезда с реле в обратном проводе (двухфазная, трехрелейная);
  • включение реле на разность токов двух фаз (двухфазная, однорелейная).

Схемы характеризуются отношением тока в реле lр к вторичному I2 току ТТ, называемым коэффициентом схемы.

Коэффициент схемы для треугольника

Содержание
  1. Схема полной звезды ТТ
  2. Схема неполной звезды ТТ
  3. Схема неполной звезды ТТ с реле в обратном проводе
  4. Схема неполного треугольника ТТ
  5. Схемы соединений трансформаторов тока, виды схем, параллельное и последовательное
  6. Назначение трансформаторов тока
  7. Схема восьмерки или включение реле на разность токов двух фаз.
  8. Соединение трансформаторов тока и обмоток реле в неполную звезду
  9. Соединение трансформаторов тока в фильтр токов нулевой последовательности
  10. Последовательное соединение трансформаторов тока
  11. Номинальное напряжение обмотки разомкнутого треугольника
  12. Схемы соединений трансформаторов напряжения в открытый и разомкнутый треугольник
  13. Разомкнутый треугольник. Открытый треугольник
  14. Различие между соединениями
  15. Разомкнутый треугольник
  16. В каких случаях применяют
  17. Векторная диаграмма соединения треугольником
  18. Схема неполного и полного треугольника и особенности работы РЗА по этим схемам.
  19. Классификация трансформаторов напряжения
  20. 🎥 Видео

Видео:Метод неопределенных коэффициентов. 10 класс.Скачать

Метод неопределенных коэффициентов. 10 класс.

Схема полной звезды ТТ

Коэффициент схемы для треугольника

В схеме полной звезды (рис. 1, а) в реле проходят вторичные токи измерительных трансформаторов, поэтому коэффициент схемы kcx=1.

Защита может срабатывать при любом виде КЗ. Эта схема применяется обычно в сетях с глухозаземленной нейтралью, в которых могут возникать не только междуфазные, но и однофазные КЗ, сопровождающиеся протеканием тока в одной фазе. В сетях с изолированной (компенсированной) нейтралью (6-35 кВ) схема, как правило, не применяется, так как в этих сетях могут возникать лишь междуфазные КЗ, для фиксации которых достаточно иметь трансформаторы тока в двух фазах. Схема относительно дорогая, так как требует трех ТТ и трех реле тока.

Видео:Преобразование звезды сопротивлений в эквивалентный треугольник. Преобразование мостовой схемыСкачать

Преобразование звезды сопротивлений в эквивалентный треугольник. Преобразование мостовой схемы

Схема неполной звезды ТТ

Коэффициент схемы для треугольника

В схеме неполной звезды (рис. 1, б) в реле тока проходят вторичные токи ТТ, установленных в фазах А и С. Коэффициент схемы kcx = 1. Схема нашла широкое распространение в сетях с изолированной нейтралью, поскольку она обеспечивает отключение любого междуфазного КЗ (двухфазного или трехфазного).

Недостатком схемы является пониженная (в 2 раза по сравнению с предыдущей схемой) чувствительность максимальной токовой защиты при двухфазном КЗ АВ за трансформатором со схемой соединения обмоток У/Д-11, поскольку при этом в реле защиты проходит ток, в 2 раза меньше, чем в схеме полной звезды.

Видео:Построение векторных диаграмм/Треугольник токов, напряжений и мощностей/Коэффициент мощностиСкачать

Построение векторных диаграмм/Треугольник токов, напряжений и мощностей/Коэффициент мощности

Схема неполной звезды ТТ с реле в обратном проводе

Коэффициент схемы для треугольника

В схеме неполной звезды с реле в обратном проводе (рис. 1, в) через реле 3КА, включенное в обратный провод, проходит сумма вторичных токов фаз А и С или (при междуфазных КЗ) ток фазы В с обратным знаком [Л1, с.42]:

Коэффициент схемы для треугольника

Схема обладает достоинством схемы неполной звезды (использование двух ТТ) и имеет такую же чувствительность при двухфазных КЗ за трансформатором У/Д-11, как и схема полной звезды. Коэффициент схемы kcx = 1.

Схема неполной звезды с реле в обратном проводе или без него нашла широкое распространение в токовых защитах линий напряжением до 35 кВ включительно (т.е. в сетях с изолированной нейтралью).

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Схема неполного треугольника ТТ

Коэффициент схемы для треугольника

В схеме неполного треугольника (рис. 1, г) в реле КА проходит ток, равный разности токов фаз А и С, в которых установлены ТТ [Л1, с.42]:

Коэффициент схемы для треугольника

Коэффициент схемы (в симметричном режиме работы защищаемой линии) [Л1, с.43]:

Коэффициент схемы для треугольника

Достоинствами схемы являются ее простота и дешевизна: используется только одно реле тока.

Однако схема имеет недостатки, существенно ограничивающие область ее применения:

  • защита обладает пониженной чувствительностью (по сравнению с рассмотренными выше схемами в √3 раз) при некоторых видах двухфазных К3 на защищаемой линии;
  • защита отказывает в действии при двухфазном К3 за трансформатором Y/Д-l1, так как Iр = Iа — Iс оказывается в этом случае равным нулю;

И напоследок, для проверки своих знаний в части схем соединения обмоток ТТ и реле, можете воспользоваться обучающей программой по релейной защите и автоматике.

1. Измерительные трансформаторы тока и напряжения с литой изоляцией. Часть 1. Киреева Э.А., 2009 г.

Видео:Схемы и группы соединений обмоток силовых трансформаторовСкачать

Схемы и группы соединений обмоток силовых трансформаторов

Схемы соединений трансформаторов тока, виды схем, параллельное и последовательное

Видео:Векторные диаграммы и коэффициент мощностиСкачать

Векторные диаграммы и коэффициент мощности

Назначение трансформаторов тока

Счётчики для однофазных и трёхфазных сетей рассчитаны на номинальные токи до 100 А. Использование приборов с большими токами затруднено по причине необходимости использования проводов слишком большого сечения. Таким образом, для измерения характеристик в линиях с большими токами необходимо использовать специальные устройства, понижающие ток до приемлемого значения. Для этой цели используются трансформаторы тока (ТТ).

Первичная обмотка трансформатора тока включается последовательно в линейный провод, по которому проходит высокий ток, а ко вторичной обмотке подключается измерительный прибор. Для удобства выводы маркируются обозначениями. Для начала и, соответственно, конца первичной обмотки применяются обозначения Л1 и Л2. Для вторичной обмотки — И1 и И2. При подключении необходимо строго соблюдать полярность первичной и вторичной обмоток ТТ.

Коэффициент схемы для треугольника

Чаще всего величина вторичного тока равна 5 А, иногда применяются ТТ со вторичным током 1 А. Для измерения же напряжения в высоковольтных сетях используется подключение через трансформатор напряжения, который понижает напряжение до 100 или 57.7 вольт.

Коэффициент схемы для треугольника

Трансформаторы тока подключаются в трёхфазных цепях по схеме неполной звезды (сети с изолированной нейтралью). При наличии нулевого провода подключение осуществляется с помощью полной звезды. В дифференциальных защитах силовых трансформаторов ТТ подключаются по схеме «Треугольник».

Это позволяет скомпенсировать сдвиг фаз вторичных токов, что уменьшит ток небаланса. В трёхфазных сетях без нулевого провода обычно трансформаторы тока подключаются только на две ведущие линии, поскольку измерив ток в двух фазах, можно легко рассчитать величину тока в третьей фазе.

Если сеть имеет глухозаземлённую нейтраль (как правило, сети 110 кВ и выше), то обязательно подключение ТТ ко всем трём фазам. Соединение обмоток реле и трансформаторов тока в полную звезду. Эта схема соединения трансформаторов представлена в виде векторных диаграмм, которые иллюстрируют работу трансформатора на рис. 2.4.1 и на схемах 2.4.2, 2.4.3, 2.4.4.
Коэффициент схемы для треугольника

Если трансформатор работает в нормальном режиме, или если он симметричный, то будет проходить ток небаланса или небольшой ток, который появляется из–за разных погрешностей трансформаторов тока.

Представленная выше схема применяется против всех видов КЗ (междуфазных и однофазных) во время включения защиты.
Трехфазное КЗ
Коэффициент схемы для треугольникаДвухфазное КЗ
Коэффициент схемы для треугольника
Однофазное КЗ
Коэффициент схемы для треугольникаОтношение Iр/Iф (ток в реле)/ (ток в фазе) называется коэффициентом схемы, его можно определить для всех схем соединения. Для данной схемы коэффициент схемы kсх будет равен 1.
Коэффициент схемы для треугольника

На рис. 2.4.5 предоставлена схема соединения обмоток реле и трансформаторов тока в неполную звезду, а на рис. 2.4.6, 2.4.7. ее векторные диаграммы, которые иллюстрируют работу этой схемы.

Трехфазное КЗ — когда токи могут идти в обратном проводе по обоим реле.
Двухфазное КЗ — когда токи, могут протекать в одном или в двух реле в соответствии с повреждением тех или иных фаз.

Коэффициент схемы для треугольникаКЗ фазы В одной фазы может происходить тогда, когда токи не появляются в этой схеме защиты.

Коэффициент схемы для треугольникаСхему неполной звезды можно применять только в сетях с нулевыми изолированными точками при kсх=1 с целью защиты от КЗ междуфазных, и может реагировать только на некоторые случаи КЗ однофазного.

На рис. 2.4.8. можно изучить схему соединения в звезду и треугольник обмоток реле и трансформаторов соответственно.

Во время симметричных нагрузок в реле и в период возникновения трехфазного КЗ может проходить линейный ток, сдвинутый на 30* по фазе относительно тока фазы и в разы больше его.

Особенности схемы этого соединения:

  1. при разных всевозможных видах КЗ проходят токи в реле, при этом защита которая построена по такой схеме, будет реагировать на все виды КЗ;
  2. ток в реле относится к фазному току в зависимости от вида КЗ;
  3. ток нулевой последовательности, который не имеет путь через обмотки реле для замыкания, не может выйти за границы треугольника трансформаторов тока.

Выше приведенная схема применяется чаще всего для дистанционной или во время дифференциальной защиты трансформаторов. Коэффициент схемы для треугольника

Видео:Несимметричная нагрузка. Схема соединения "треугольник"Скачать

Несимметричная нагрузка. Схема соединения "треугольник"

Схема восьмерки или включение реле на разность токов двух фаз.

На рис. 2.4.9 представлена сама схема соединения, а на рис. 2.4.10, 2.4.11.векторные диаграммы, которые иллюстрируют работу этой схемы.

Видео:Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбезСкачать

Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбез

Соединение трансформаторов тока и обмоток реле в неполную звезду

Коэффициент схемы для треугольникаСимметричная нагрузка при трехфазном КЗ.

Двухфазное КЗ Коэффициент схемы для треугольникаДвухфазно КЗ АВ или ВС
Коэффициент схемы для треугольникаПри разных видах КЗ, ток в реле и его чувствительность будут разными. Ток в реле будет равен нулю во время однофазного КЗ фазы В. Эту схему можно применять, тогда, когда не требуется действий трансформатора для защиты от разных междуфазных КЗ с соединением обмоток Y/* – 11 группа, и когда эта защита обеспечивает необходимую чувствительность.

Видео:Что такое звезда и треугольник в трансформатореСкачать

Что такое звезда и треугольник в трансформаторе

Соединение трансформаторов тока в фильтр токов нулевой последовательности

Коэффициент схемы для треугольникаНа рис. 2.4.12. можно изучить схему соединения трансформаторов тока в фильтр токов нулевой последовательности. Только во время однофазных или двуфазных КЗ на землю появляется ток в реле. Эту схему можно применять во время защиты от КЗ на землю. КЗ IN=0 при двухфазных и трехфазных нагрузках. Но часто ток небаланса Iнб появляется из–за погрешности трансформаторов тока в реле.

Видео:Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигательСкачать

Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигатель

Последовательное соединение трансформаторов тока

Коэффициент схемы для треугольника
На рис. 2.4.13. представлена схема последовательного соединения трансформаторов тока. Подключенная к трансформаторам тока, нагрузка, распределяется поровну. Напряжение, которое приходится на любой трансформатор тока и на вторичный ток остается неизменным.

Видео:Схемы токовых цепейСкачать

Схемы токовых цепей

Номинальное напряжение обмотки разомкнутого треугольника

Коэффициент схемы для треугольника Коэффициент схемы для треугольника Коэффициент схемы для треугольника Коэффициент схемы для треугольника Коэффициент схемы для треугольника

Видео:Трансформаторы напряженияСкачать

Трансформаторы напряжения

Схемы соединений трансформаторов напряжения в открытый и разомкнутый треугольник

Схема соединения в открытый треугольник подразумевает, что оборудование подключено между сторонами двух фаз. При этом проводится электрический ток с внешней стороны, с вторичных обмоток числа пропорционально этому показателю. Реле и основная нагрузка пускаются между вторичной сетью, что позволяет получить нужный уровень сопротивления.

Данная схема позволяет подключить разу три источника. Обратить внимание следует на то, что подача организуется линейным способом, и нужно избегать прохождения тока от первого к третьему источнику и наоборот.

Разомкнутый же тип подключения применяются в выпрямительному оборудовании. При помощи соединения типа достигают тока тройной частоты, что при работе со звездой или открытым симметричным невозможно. Применяется вариант, когда три трансформатора с одной фазой подключаются к прибору, который увеличивает пропорционально три частоты работы.

Коэффициент схемы для треугольника

При помощи рассматриваемой фигуры получают нулевую последовательность, то есть в нормальном функционале UP будет равно нулю.

Нейтраль первичной обмотки в обязательном порядке заземляется, а для вторичной выбирают параметры не менее чем в 100 Вольт, если заземление. Для изолированной коэффициент берется 100 к 3 В. Коэффициент троиться, следовательно, вторичные обмотки суммируют коэффициент трансформации также в три раза. Следовательно, для описанного выше примера он состоит 6 тысяч к ста к трем. Пик получается от трансформаторных обмоток внешней поверхности, так как подача ведется через вторичку. Обязательно заземление.

Коэффициент схемы для треугольника Коэффициент схемы для треугольника Коэффициент схемы для треугольника

Видео:Коэффициент мощности (cos φ) Активная, реактивная и полная мощность. Как исправить плохой коэфицент.Скачать

Коэффициент мощности (cos φ) Активная, реактивная и полная мощность. Как исправить плохой коэфицент.

Разомкнутый треугольник. Открытый треугольник

Дата публикации: 17 июля 2013 . Категория: Статьи.

Следует отличать соединение в разомкнутый треугольник (рисунок 1, а) от соединения в открытый треугольник (рисунок 1, б), называемого иногда V-образным. Рассмотрим на нескольких типичных примерах области их применения.

Рисунок 1. Различие между соединениями в разомкнутый (а) и открытый (б) треугольники. Примеры применения соединений в разомкнутый треугольник: утроитель частоты (в) и фильтр напряжения нулевой последовательности (г).

Видео:Фазировка трансформатора "треугольник"/ "звезда".Скачать

Фазировка трансформатора "треугольник"/ "звезда".

Различие между соединениями

Основное отличие разомкнутого треугольника от открытого состоит в том, что при помощи него возможно получить напряжение нулевой последовательности. В случае же открытого подсоединения значения зажимов вторичек всегда пропорциональны междуфазному.

Но в любом случае для защиты трансформаторов с такой схемой используются автоматы и предохранители. Если происходит обрыв фазы, то происходит короткое замыкание.

Блокировка при помощи автоматов позволит избежать скачка, которое приводит к неисправностям обмотки. Контроль проводится с возможностью измерения.

Видео:Трёхфазный переменный ток. Соединение "звезда" и "треугольник"Скачать

Трёхфазный переменный ток. Соединение "звезда" и "треугольник"

Разомкнутый треугольник

Разомкнутый треугольник используется, например, в выпрямительных установках для получения тока тройной частоты, подмагничивающего уравнительный реактор (смотрите статью «Шестифазная звезда и двойной зигзаг», рисунок 3, а) С этой целью применяют утроитель частоты, который состоит из трех однофазных трансформаторов с сильно насыщенными магнитопроводами. Первичные обмотки утроителя частоты соединены в звезду с изолированной нейтралью, вторичные – в разомкнутый треугольник (рисунок 1, в). Сильное насыщение магнитопроводов, их малое магнитное сопротивление, непроходимость нейтрали первичной обмотки для токов третьей гармоники – все это обеспечивает возникновение во вторичных обмотках электродвижущей силы (э. д. с.) тройной частоты, совпадающих во времени у всех фаз (смотрите статью «Понятие о магнитном равновесии трансформатора»). Поэтому через УР, замыкающий контур вторичных обмоток утроителя частоты, проходит ток тройной частоты, что и требуется в данном случае (смотрите статью «Шестифазная звезда и двойной зигзаг»).

Видео:Соединение трехфазных цепей звездой и треугольникомСкачать

Соединение трехфазных цепей звездой и треугольником

В каких случаях применяют

Схематичное построение разомкнутого варианта для трансформатора применяется довольно часто на производстве. Дело в том, что благодаря ней можно использовать синхронизацию на силовых тс. Используется для соединения трансформаторов с одной фазой, если нет возможности установить трехфазный. Уберегает механизмы, в том числе и электрические двигатели от подачи на два, если нет напряжения в одной из фаз. Единственно допустимой схемой сборки является в случае, если ротор установлен в расточку статора.

Видео:Как работает пусковой переключатель со звезды на треугольникСкачать

Как работает пусковой переключатель со звезды на треугольник

Векторная диаграмма соединения треугольником

Векторная диаграмма — способ изображения переменных напряжений и токов с помощью векторов.

Векторная диаграмма трехфазной системы ЭДС и график ЭДС фаз А, B и С:

Коэффициент схемы для треугольника

Векторная диаграмма трехфазной симметричной системы ЭДС:

Коэффициент схемы для треугольника

Векторная диаграмма напряжений симметричной нагрузки, соединенной звездой:

Коэффициент схемы для треугольника

Построение диаграммы напряжений симметричной нагрузки, соединенной звездой:

Векторная диаграмма токов активной несимметричной нагрузки, соединенной звездой:

Коэффициент схемы для треугольника

Построение векторной диаграммы для несимметричной нагрузки при обрыве нейтрального провода:

Коэффициент схемы для треугольника

Несимметричная нагрузка при обрыве нейтрального провода:

Коэффициент схемы для треугольника

Построение диаграммы для несимметричной нагрузки. Звезда без нейтрального провода:

Векторная диаграмма симметричной нагрузки, соединенной звездой:

Коэффициент схемы для треугольника

Векторные диаграммы напряжений и токов при соединении приемников треугольником:

Коэффициент схемы для треугольника

Векторная диаграмма напряжений и токов при соединении приемников треугольником:

Векторная диаграмма напряжений и токов при соединении приемников треугольником (несимметричная нагрузка):

Коэффициент схемы для треугольника

Векторная диаграмма напряжений и токов несимметричной нагрузки, соединенной треугольником:

Особенности включения трехфазных систем треугольником.

При соединении трехфазных систем треугольником также используются три гармо­нических напряжения (4.1), которые были рассмотрены в лекции 15. Однако соединение этих источников выполняется таким образом, что начало одной фазы соединяется с концом другой. На рис. 4.5
а
показано такое включение трех обмоток генератора и соответствующее ему включение источников напряжения .

Векторная диаграмма для, соединения обмоток генератора по схеме треугольника приведена на рис. 4.5, б

. На этой диаграмме полагается, что вектора напряжений генератора имеют значения

т. е. генератор считается симметричным с прямым чередованием фаз.

При соединении нагрузок треугольником фазные напряжения будут равны линейным, а линейные токи равны геометрической разности двух фазных токов, подходящих к вершине треугольника нагрузок, как показано на рис. 4.6. При этом для положительных направлений токов справедливы следующие соотношения, которые устанавливают связь между линейными и фазными токами

Фазные токи рассчитываются по известным линейным напряжениям и проводимостям YAB, YBC, YCA фаз приемников

Если падения напряжений на проводах линий передачи малы, то можно считать, что напряжения генератора равны соответствующим напряжениям приемника, т. е. .

Из уравнений (26.2) также следует, что при любых значениях фазных токов для линейных токов справедливо выражение

Следует отметить, что включение нагрузок по схеме треугольника возможно при любом включении обмоток генератора, как по схеме треугольника, так и по схеме звезды. Однако, при включении генератора по схеме звезды фазные напряжения приемника будут равны линейным напряжениям генератора. При этом нулевая точка генератора не используется.

Рассмотрим некоторые частные режимы работы при включении нагрузок по схеме треугольника. К таким режимам относятся:

□ равномерная нагрузка фаз генератора;

□ неравномерная нагрузка фаз генератора;

□ обрыв одной фазы приемника;

□ обрыв двух фаз приемника;

□ обрыв линейного провода.

Короткое замыкание любой фазы приемника приводит к аварийному режиму, так как при этом замыкается накоротко одна из обмоток генератора, и поэтому недопустимо.

Равномерная нагрузка фаз генератора.

При симметричной системе напряжений генератора, определяемых уравнениями (4.1) и одинаковой нагрузке фаз приемника (YAB = YBC = YCA = Yn) действующие значения токов в фазах равны между собой, поэтому линейные токи связаны с фазными токами соотношением

Токи в фазах приемника определяются по формулам (4.3) и при равенстве проводимостей имеют значения

Векторная диаграмма для равномерной нагрузки фаз генератора приведена на рис. 4.7а

Неравномерная нагрузка фаз генератора.

Неравномерная нагрузка фаз генератора является наиболее распространенным режимом работы трехфазной системы. Неравномерная нагрузка характеризуется различными значениями проводимостей, включенных в приемнике, т. е.
YAB = YBC = YCA
. Действующие значения токов в фазах приемника при неравномерной нагрузке и симметричном генераторе про­порциональны проводимостям нагрузки и определяются по формулам (26.3).

Видео:6.2. Группы соединений обмоток трансформаторовСкачать

6.2. Группы соединений обмоток трансформаторов

Схема неполного и полного треугольника и особенности работы РЗА по этим схемам.

Схема соединения с 2 ТТ и одним реле, включенным на разность токов двух фаз (неполный треугольник).

Коэффициент схемы для треугольника

Ксх = Ip = Ia — Ic

— схема применяется для защиты от междуфазных повреждений.

— в нормальном режиме и при 3-х фазном замыкании в обмотке реле протекает ток, который в > Iф.

— защита обладает малой чувствительностью при 2-х фазных КЗ АВ и ВС, следовательно чувствительность в

меньше чем чувствительность защит схем а, б.

Из-за этих недостатков применяется для защиты эл. двигателей.

При КЗ между АС Кч = Кч по схемам полной и неполной звезды Кч =

Схема соединения ТТ в Δ, а обмоток реле в Y (схема полного треугольника).

Коэффициент схемы для треугольника

Коэффициент схемы для треугольника

1. Система электроснабжения, в которой применяется данная схема.

2. Схема замещения с Iкз

Недостаток: Сложна и дорога.

Ток в реле проходит при всех видах КЗ, следовательно защита будет работать во всех случаях. При замыкании на землю схема мало чувствительна. Это связано с тем, что при этих видах КЗ возникает токи 0-й последовательности, не выходящие за пределы Δ ТТ.

В этом случае на Q3 стоит в защите схема полного Δ.

Реле максимального тока РТВ, РТМ. МТЗ с независимой выдержкой времени на переменном оперативном токе с дешунтированием отключающих катушек выключателя.

Реле максимального тока с механической выдержкой времени РТВ, выполненное на электромагнитной системе соленоидного типа (рис. 1), обладает ограниченно зависимой временной характеристикой.

При появлении в катушке реле достаточной силы якорь притягивается к неподвижному полюсу. Усилие через пружину как жесткую связь передается на ударник и толкает его вверх. Движению ударника препятствует часовой механизм, с

которым он связан при помощи тяги. Скорость движения определяется силой тока в реле, что обуславливает зависимую часть характеристики (рис. 2).

По истечении выдержки времени ударник освобождается и, ударяя по рычагу отключающего валика, освобождает механизм выключателя.

Начиная с токов, примерно 3-кратных току срабатывания, развивается усилие, достаточное для сжатия пружины, благодаря чему сердечник втягивается мгновенно. В этом случае скорость движения ударника определяется свойствами пружины и тормозным действием механизма и не зависит от силы тока в реле, что обеспечивает независимую часть характеристики.

Реле максимального тока РТМ

Реле максимального тока мгновенного действия РТМ не имеет часового механизма и отличается от РТВ широкой шкалой уставок токов срабатывания (до 150 А). Есть конструкции реле мгновенного действия, у которых ток срабатывания регулируется плавно изменением начального расстояния от сердечника до неподвижного полюса.

Благодаря простоте схем защит с реле РТМ и РТВ прямого действия эти реле находят применение для защит в системах сельского электроснабжения.

Электромагнитные соленоидные приводы ПС-10, ПС-30 не имеют встроенных катушек реле. Для выполнения защиты с питанием оперативных цепей непосредственно от трансформаторов тока применяют специальную приставку к приводу.

Кроме указанных ранее, используют реле минимального напряжения мгновенного действия РНМ и с выдержкой времени РНВ.

Схемы с дешунтированием электромагнитов отключения выключателя выполняются на электромеханических реле (с зависимой и независимой характеристикой выдержки времени).

Расчет тока срабатывания МТЗ и проверка надежности дей­ствия всех элементов схемы после дешунтирования ЭО состо­ит из четырех этапов. Выбирается первичный и вторичный токи срабатывания токовых реле (IС3 и IСР). Проверка погрешности ТТ производится для МТЗ с независимой характеристикой при токе 1СЗ, а для зависимых — при токе КЗ. Сопротивление обмоток реле времени и промежуточных реле Zp принимается при разомкнутой вторичной цепи ПНТ этих реле. Проверяется надежность работы вспомогательных реле и ЭО после дешунтирования ЭО: где IСЭО ток срабатывания ЭО; I’2 — вторичный ток ТТ после дешунтирования. Минимальное значение коэффициента чувствительности для ЭО должно быть приблизительно на 20% больше кч принимаемого для РЗ. Соответствующий току I’2 первичный ток с учетом погреш­ности ТТ, определяемой Iнам, равен: (4.19) 3. Проверяется отсутствие возврата реле РТ и РП после дешунтирования ЭО. Для этого вто­ричный ток I”2 , проходящий по реле после дешунтирования ЭО, удовлетворял условию

(4.20) где IВ03 и 1ср — токи возврата и срабатывания дешунтирующего реле. Соответствующий первичный ток (4.21) Ток намагничивания 1нам может быть найден по экспери­ментальной характеристике U2 = f(I2) или по кри­вым погрешностей ТТ. 4. Проверяется надежность работы

контактов реле, дешун­тирующих ЭО: (4.22) где 1К тах — максимальный ток КЗ. Если условие (4.22) не выполняется, необходимо определить 12мах с учетом Iнам, т. е. насыщения ТТ . Достоинством схем с дешунтированием является их простота, высокая надежность действия при КЗ. МТЗ с дешунтированием при­меняются в распределительных сетях 6-10 кВ на присоедине­ниях с выключателями с пружинным приводом (на выключателях с электромагнитными приводами этот принцип неприменим, так как мощность ТТ недостаточ­на для их отключения). Питания оперативных цепей МТЗ возможно от выпрями­тельных блоков (БП). БП — устрой­ство, преобразующее с помощью выпрямителя переменное напряжение или ток сети в выпрямленное напряжение. Применяются два вида блоков: с выпрямленным током, по­лучаемым от ТТ; с выпрямленным напряжением, получаемым от ТН или трансформатора собственных нужд (ТСН).

Видео:СХЕМА СОЕДИНЕНИЯ ВТОРИЧНЫХ ОБМОТОК ТТ НА РАЗНОСТЬ ТОКОВ ДВУХ ФАЗ.ВЕКТОРНАЯ ДИАГРАММА НА ПАЛЬЦАХ!ЖМИ!Скачать

СХЕМА СОЕДИНЕНИЯ ВТОРИЧНЫХ ОБМОТОК ТТ НА РАЗНОСТЬ ТОКОВ ДВУХ ФАЗ.ВЕКТОРНАЯ ДИАГРАММА НА ПАЛЬЦАХ!ЖМИ!

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В — для однофазных, включаемых между фазами, трехфазных; 100√3 — однофазных, включаемых между фазой и землей напряжение дополнительной вторичной обмотки (100В — однофазные в сети с заземленной нейтралью, 100√3 — однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

🎥 Видео

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников
Поделиться или сохранить к себе: