Какая прямая секущая к окружности

Видео:Касательная и секущая к окружности.Скачать

Касательная и секущая к окружности.

Касательная и секущая к окружности

На плоскости прямая и окружность могут либо пересекаться друг с другом, либо не пересекаться:

Какая прямая секущая к окружности

Расстояние от центра O до прямой m равно длине перпендикуляра OA. Следовательно, расстояние от центра окружности до прямой всегда будет равно перпендикуляру, опущенному из центра окружности на прямую.

Если расстояние от центра окружности до прямой больше радиуса данной окружности, то прямая и окружность не пересекаются и не имеют общих точек:

Какая прямая секущая к окружности

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Касательная

Если расстояние от центра окружности до прямой равно радиусу данной окружности, то прямая касается окружности и они имеют одну общую точку, такая прямая называется касательной к окружности:

Какая прямая секущая к окружности

Прямая m — касательная. Точка соприкосновения прямой и окружности, то есть их общая точка, называется точкой касания: точка A — точка касания.

Касательная – это прямая линия, имеющая с окружностью одну общую точку.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Секущая

Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется секущей к окружности:

Какая прямая секущая к окружности

Секущая – это прямая линия, имеющая с окружностью две общие точки.

Видео:Окружность, касательная, секущая и хорда | МатематикаСкачать

Окружность, касательная, секущая и хорда | Математика

Касательная к окружности

Какая прямая секущая к окружности

О чем эта статья:

Видео:Секущая и касательная. 9 класс.Скачать

Секущая и касательная. 9 класс.

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Какая прямая секущая к окружности

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Какая прямая секущая к окружности

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:ОГЭ за одну минуту | ОГЭ, математика, задание 16 (окружность и касательная)Скачать

ОГЭ за одну минуту | ОГЭ, математика, задание 16 (окружность и касательная)

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Какая прямая секущая к окружности

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Какая прямая секущая к окружности

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Какая прямая секущая к окружности

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Какая прямая секущая к окружности

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Какая прямая секущая к окружности

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Какая прямая секущая к окружности

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Какая прямая секущая к окружности

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Какая прямая секущая к окружности

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Какая прямая секущая к окружности

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Какая прямая секущая к окружности

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Какая прямая секущая к окружностиОтрезки и прямые, связанные с окружностью
Какая прямая секущая к окружностиСвойства хорд и дуг окружности
Какая прямая секущая к окружностиТеоремы о длинах хорд, касательных и секущих
Какая прямая секущая к окружностиДоказательства теорем о длинах хорд, касательных и секущих
Какая прямая секущая к окружностиТеорема о бабочке

Какая прямая секущая к окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьКакая прямая секущая к окружности
КругКакая прямая секущая к окружности
РадиусКакая прямая секущая к окружности
ХордаКакая прямая секущая к окружности
ДиаметрКакая прямая секущая к окружности
КасательнаяКакая прямая секущая к окружности
СекущаяКакая прямая секущая к окружности
Окружность
Какая прямая секущая к окружности

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругКакая прямая секущая к окружности

Конечная часть плоскости, ограниченная окружностью

РадиусКакая прямая секущая к окружности

Отрезок, соединяющий центр окружности с любой точкой окружности

ХордаКакая прямая секущая к окружности

Отрезок, соединяющий две любые точки окружности

ДиаметрКакая прямая секущая к окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

КасательнаяКакая прямая секущая к окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

СекущаяКакая прямая секущая к окружности

Прямая, пересекающая окружность в двух точках

Видео:ЗАДАНИЕ 1 ЕГЭ (ПРОФИЛЬ). ХОРДА, КАСАТЕЛЬНАЯ И СЕКУЩАЯ.Скачать

ЗАДАНИЕ 1 ЕГЭ (ПРОФИЛЬ). ХОРДА, КАСАТЕЛЬНАЯ И СЕКУЩАЯ.

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеКакая прямая секущая к окружностиДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыКакая прямая секущая к окружностиЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныКакая прямая секущая к окружностиБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиКакая прямая секущая к окружностиУ равных дуг равны и хорды.
Параллельные хордыКакая прямая секущая к окружностиДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Какая прямая секущая к окружности

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хордыКакая прямая секущая к окружности

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хордыКакая прямая секущая к окружности

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружностиКакая прямая секущая к окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длиныКакая прямая секущая к окружности

Большая из двух хорд расположена ближе к центру окружности.

Равные дугиКакая прямая секущая к окружности

У равных дуг равны и хорды.

Параллельные хордыКакая прямая секущая к окружности

Дуги, заключённые между параллельными хордами, равны.

Видео:Теорема о касательной и секущейСкачать

Теорема о касательной и секущей

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Какая прямая секущая к окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Какая прямая секущая к окружности

Какая прямая секущая к окружности

ФигураРисунокТеорема
Пересекающиеся хордыКакая прямая секущая к окружности
Касательные, проведённые к окружности из одной точкиКакая прямая секущая к окружности
Касательная и секущая, проведённые к окружности из одной точкиКакая прямая секущая к окружности
Секущие, проведённые из одной точки вне кругаКакая прямая секущая к окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Какая прямая секущая к окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Пересекающиеся хорды
Какая прямая секущая к окружности
Касательные, проведённые к окружности из одной точки
Какая прямая секущая к окружности
Касательная и секущая, проведённые к окружности из одной точки
Какая прямая секущая к окружности
Секущие, проведённые из одной точки вне круга
Какая прямая секущая к окружности
Пересекающиеся хорды
Какая прямая секущая к окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Какая прямая секущая к окружности

Касательные, проведённые к окружности из одной точки

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Секущие, проведённые из одной точки вне круга

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Видео:Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1Скачать

Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Тогда справедливо равенство

Какая прямая секущая к окружности

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Какая прямая секущая к окружности

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Какая прямая секущая к окружности

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Какая прямая секущая к окружности

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Какая прямая секущая к окружности

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Какая прямая секущая к окружности

откуда и вытекает требуемое утверждение.

Видео:Окружность / Касательная, хорда, секущая / задача из ЕГЭ #27862Скачать

Окружность / Касательная, хорда, секущая / задача из ЕГЭ #27862

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Воспользовавшись теоремой 1, получим

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Воспользовавшись равенствами (1) и (2), получим

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Какая прямая секущая к окружности

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Какая прямая секущая к окружности

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

💡 Видео

Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1Скачать

Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1

Окружность / Касательная, хорда, секущая / задача из ЕГЭ #27858Скачать

Окружность / Касательная, хорда, секущая / задача из ЕГЭ #27858

Секретная теорема из учебника геометрииСкачать

Секретная теорема из учебника геометрии

касательная и секущая в окружностиСкачать

касательная и секущая в окружности

Теорема об отрезках хорд и секущихСкачать

Теорема об отрезках хорд и секущих

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

16 задание ОГЭ по математике 2023 Касательная и секущая Shorts #shorts #огэпоматематике2023Скачать

16 задание ОГЭ по математике  2023  Касательная и секущая Shorts #shorts #огэпоматематике2023

Окружность / Касательная, хорда, секущая / задача из ЕГЭ #27859Скачать

Окружность / Касательная, хорда, секущая / задача из ЕГЭ #27859
Поделиться или сохранить к себе: