Как связаны между собой диаметр и радиус одной окружности

Радиус и диаметр окружности

Как связаны между собой диаметр и радиус одной окружности

Окружность — это фигура в геометрии, которая состоит
из множества точек, расположенных на одинаковом
расстоянии от заданной точки (центра окружности).

Радиус окружности — это отрезок, который соединяет
центр окружности с какой-либо точкой окружности.

Диаметр окружности — это отрезок, который соединяет
две любые точки окружности, причем сам отрезок
должен проходить через центр окружности

Eсли от центра окружности провести
отрезки ко всем точкам окружности, то они будут иметь
одинаковую длину, то есть равны. В математике
такие отрезки называют радиусами.

Все радиусы окружности, как и диаметры окружности,
равны между собой, имеют одинаковую длину.

Как связаны между собой диаметр и радиус одной окружности

На рисунке выше изображена окружность, с центром в точке O.
OA = OB = OC — радиусы окружности;
BC = CO + OB — диаметр окружности;

Радиус окружности принято обозначать маленькой либо большой буквой, r или R.
Диаметр окружности обозначают буквой D.

Диаметр окружности условно состоит из двух
радиусов и равен длинам этих радиусов.

Длину радиуса окружности можно найти через диаметр окружности.
Для этого достаточно разделить на два длину диаметра окружности,
получившееся число и будет радиусом.

Формула радиуса окружности через диаметр:

Формула диаметра окружности через радиус:

Также, окружность, может быть вписанной в фигуру, описанной
около фигуры; или вообще может быть не вписана и не описана.
Формула радиуса окружности зависит от того находится фигура
внутри окружности, или окружность находится около фигуры.

Существует радиус вписанной окружности
и радиус описанной окружности.

Формулы радиуса вписанной и радиуса описанной окружностей
зависят в первую очередь от геометрической фигуры.

Радиус вписанной окружности — это радиус окружности,
которая вписана в геометрическую фигуру.

Радиус описанной окружности — это радиус окружности,
которая описана около геометрической фигуры.

Видео:Окружность. Как найти Радиус и ДиаметрСкачать

Окружность. Как найти Радиус и Диаметр

Круг. Окружность (центр, радиус, диаметр)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Как связаны между собой диаметр и радиус одной окружности

Данный урок посвящён изучению окружности и круга. Также учитель научит отличать замкнутые и незамкнутые линии. Вы познакомитесь с основными свойствами окружности: центром, радиусом и диаметром. Выучите их определения. Научитесь определять радиус, если известен диаметр, и наоборот.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Радиус и диаметр окружности — определение двух отрезков

На практике в жизни с окружностью сталкивается каждый человек. Это может быть обруч, который крутят на уроке физкультуры либо на занятиях фитнеса, а также арена цирка либо просто украшение на пальце — кольцо. Радиус и диаметр окружности — взаимосвязанные математические понятия, которые необходимо выучить детям в школьной программе еще в начальной школе.

Как связаны между собой диаметр и радиус одной окружности

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Определения понятий

Чтобы изобразить фигуру, достаточно обвести контур карандашом вокруг круглого предмета либо начертить при помощи циркуля. На месте прокола циркуля ставят точку, что и будет центром окружности.

Окружность — геометрическое место точек плоскости, в котором длина от точек к центру одинаковая. По-другому можно описать определение, что это замкнутая кривая, в которой править будут равные отрезки, проведенные от центра до краев фигуры. Круг — часть плоскости, которая ограничена окружностью.

Как связаны между собой диаметр и радиус одной окружности

Если поставить точку на окружности и соединить ее с центром, в результате получится отрезок. Таких отрезков можно нарисовать не один, сколько точек на окружности поставить — столько и будет таких отрезков, то есть бесчисленное количество.

Отрезок, который равен расстоянию от центра до границ окружности имеет название радиуса. Этот термин с латинскими корнями и в переводе означает луч либо спица колеса.

Первый раз о термине заговорили в 1569 году, и примерно через 100 лет он стал общепринятым. И не удивительно, так как в обиходе люди часто говорят, к примеру, «пожар в радиусе 10 км уничтожил все», «в радиусе 5 м нет видимости» и так далее.

Диаметром называется отрезок, который соединяет 2 точки окружности и проходит обязательно через центр круга. Такой отрезок делит круг на 2 части. По-другому — хорда, которая проходит через центр круга. Этот отрезок самый больший, который можно изобразить в круге, что и будет отличаться от других отрезков. Их можно изобразить в фигуре бесконечное число.

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Обозначения и свойства

Понятия имеют принятые обозначения. Буквой d обозначают диаметр (в некоторых источниках обозначается перечеркнутой буквой о), а r — радиус. Для измерения используют:

Как связаны между собой диаметр и радиус одной окружности

Диаметр состоит из 2 радиусов, а это значит, если необходимо узнать, чему равен радиус, необходимо длину диаметра разделить напополам. То есть разница между ними в 2 раза. Не всегда два радиуса образуют диаметр: только при условии, если они находятся на одной прямой.

Для решений задач можно использовать формулу: d =2*r. Естественно, формула работает в обратном направлении, она будет выглядеть следующим образом: r = d/2.

Дано: r =80 мм, определить, на сколько сантиметров диаметр длиннее. Для решения задачи используют формулу d=2*r. Но для начала необходимо перевести миллиметры в сантиметры. 80 мм=8 см. Далее d=2*8=16 см. Чтобы вычислить отличие, необходимо 16−8=8 см. Ответ — на 8 см длиннее.

Видео:Круг. Окружность (центр, радиус, диаметр)Скачать

Круг. Окружность (центр, радиус, диаметр)

Дополнительные сведения

Как связаны между собой диаметр и радиус одной окружности

Если в окружности провести 2 радиуса, то в результате круг будет разделен на 2 части, которые называются секторами. Отрезки образуют центральный угол.

Если в точке пересечения радиуса с поверхностью =начертить касательную, то обе линии будут перпендикулярными по отношению друг к другу. Если провести к хорде так, чтобы между ними образовался угол 90 0 , то в точке пересечения хорда будет разделена на 2 части. Если с хордой пересекается диаметр под углом 90 0 , то хорда и дуга будут разделены на две равные части.

📽️ Видео

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?Скачать

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Окружность. 7 класс.Скачать

Окружность. 7 класс.

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)Скачать

Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Радиус Хорда ДиаметрСкачать

Радиус Хорда Диаметр

ОГЭ Задание 16 Окружность, радиус, диаметрСкачать

ОГЭ Задание 16 Окружность, радиус, диаметр

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Что такое круг окружность радиусСкачать

Что такое круг окружность радиус

✓ Как найти второй радиус? | Ботай со мной #105 | Борис ТрушинСкачать

✓ Как найти второй радиус? | Ботай со мной #105 | Борис Трушин

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shorts

1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy
Поделиться или сохранить к себе: