Как соотносятся стороны треугольника

Треугольник. Формулы и свойства треугольников.
Содержание
  1. Типы треугольников
  2. По величине углов
  3. По числу равных сторон
  4. Вершины углы и стороны треугольника
  5. Свойства углов и сторон треугольника
  6. Теорема синусов
  7. Теорема косинусов
  8. Теорема о проекциях
  9. Формулы для вычисления длин сторон треугольника
  10. Медианы треугольника
  11. Свойства медиан треугольника:
  12. Формулы медиан треугольника
  13. Биссектрисы треугольника
  14. Свойства биссектрис треугольника:
  15. Формулы биссектрис треугольника
  16. Высоты треугольника
  17. Свойства высот треугольника
  18. Формулы высот треугольника
  19. Окружность вписанная в треугольник
  20. Свойства окружности вписанной в треугольник
  21. Формулы радиуса окружности вписанной в треугольник
  22. Окружность описанная вокруг треугольника
  23. Свойства окружности описанной вокруг треугольника
  24. Формулы радиуса окружности описанной вокруг треугольника
  25. Связь между вписанной и описанной окружностями треугольника
  26. Средняя линия треугольника
  27. Свойства средней линии треугольника
  28. Периметр треугольника
  29. Формулы площади треугольника
  30. Формула Герона
  31. Равенство треугольников
  32. Признаки равенства треугольников
  33. Первый признак равенства треугольников — по двум сторонам и углу между ними
  34. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  35. Третий признак равенства треугольников — по трем сторонам
  36. Подобие треугольников
  37. Признаки подобия треугольников
  38. Первый признак подобия треугольников
  39. Второй признак подобия треугольников
  40. Третий признак подобия треугольников
  41. Треугольник
  42. Из двух последних свойств следует, что каждый угол в равностороннем
  43. треугольнике равен 60 º.
  44. 4. Продолжая одну из сторон треугольника ( AC , рис.25), получаем внешний
  45. угол BCD . Внешний угол треугольника равен сумме внутренних углов,
  46. не смежных с ним : BCD = A + B .
  47. 5. Любая сторона треугольника меньше суммы двух других сторон и больше
  48. их разности ( a b – c; b b > a – c; c c > a – b ).
  49. Треугольник. Соотношения между углами и сторонами треугольника.

Видео:Задача про соотношение сторон. Геометрия 7 класс.Скачать

Задача про соотношение сторон. Геометрия 7 класс.

Типы треугольников

По величине углов

Как соотносятся стороны треугольника

Как соотносятся стороны треугольника

Как соотносятся стороны треугольника

По числу равных сторон

Как соотносятся стороны треугольника

Как соотносятся стороны треугольника

Как соотносятся стороны треугольника

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Как соотносятся стороны треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

Медианы треугольника

Как соотносятся стороны треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Биссектрисы треугольника

Как соотносятся стороны треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Высоты треугольника

Как соотносятся стороны треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Окружность вписанная в треугольник

Как соотносятся стороны треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Окружность описанная вокруг треугольника

Как соотносятся стороны треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)Скачать

Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)

Связь между вписанной и описанной окружностями треугольника

Видео:Соотношение сторон треугольника 30-60-90 (доказательство)Скачать

Соотношение сторон треугольника 30-60-90 (доказательство)

Средняя линия треугольника

Свойства средней линии треугольника

Как соотносятся стороны треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Найдите стороны треугольникаСкачать

Найдите стороны треугольника

Периметр треугольника

Как соотносятся стороны треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Формулы площади треугольника

Как соотносятся стороны треугольника

Формула Герона

S =a · b · с
4R

Видео:7 класс, 33 урок, Теорема о соотношениях между сторонами и углами треугольникаСкачать

7 класс, 33 урок, Теорема о соотношениях между сторонами и углами треугольника

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:9 класс, 15 урок, Решение треугольниковСкачать

9 класс, 15 урок, Решение треугольников

Подобие треугольников

Как соотносятся стороны треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Найдите третью сторону треугольникаСкачать

Найдите третью сторону треугольника

Треугольник

Треугольник. Остроугольный, тупоугольный и прямоугольный треугольник.

Катеты и гипотенуза. Равнобедренный и равносторонний треугольник.

Основные свойства треугольников. Сумма углов треугольника.

Внешний угол треугольника. Признаки равенства треугольников.

Признаки равенства прямоугольных треугольников.

Замечательные линии и точки в треугольнике: высоты, медианы,

биссектрисы, срединны e перпендикуляры, ортоцентр,

центр тяжести, центр описанного круга, центр вписанного круга.

Теорема Пифагора. Соотношение сторон в произвольном треугольнике.

Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Как соотносятся стороны треугольника
Если все три угла острые ( рис.20 ), то это остроугольный треугольник . Если один из углов прямой ( Как соотносятся стороны треугольникаC, рис.21 ), то это прямоугольный треугольник; стороны a , b , образующие прямой угол, называются катетами; сторона c , противоположная прямому углу, называется гипотенузой. Если один из углов тупой ( Как соотносятся стороны треугольникаB, рис.22 ), то это тупоугольный треугольник.
Как соотносятся стороны треугольника
Треугольник ABC ( рис.23 ) — равнобедренный , если две его стороны равны ( a = c ); эти равные стороны называются боковыми, третья сторона называется основанием треугольника. Треугольник ABC ( рис.24 ) – равносторонний , если все его стороны равны ( a = b = c ). В общем случае ( abc ) имеем неравносторонний треугольник.

Основные свойства треугольников. В любом треугольнике:

1. Против большей стороны лежит больший угол, и наоборот.

2. Против равных сторон лежат равные углы, и наоборот.

В частности, все углы в равностороннем треугольнике равны.

3. Сумма углов треугольника равна 180 º .

Видео:Соотношения между сторонами и углами треугольника. Практическая часть. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. Практическая часть. 7 класс.

Из двух последних свойств следует, что каждый угол в равностороннем

Видео:Неравенства треугольника. 7 класс.Скачать

Неравенства треугольника. 7 класс.

треугольнике равен 60 º.

Видео:Задача про стороны треугольника. Геометрия 7 класс.Скачать

Задача про стороны треугольника. Геометрия 7 класс.

4. Продолжая одну из сторон треугольника ( AC , рис.25), получаем внешний

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

угол Как соотносятся стороны треугольникаBCD . Внешний угол треугольника равен сумме внутренних углов,

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

не смежных с ним : Как соотносятся стороны треугольникаBCD = Как соотносятся стороны треугольникаA + Как соотносятся стороны треугольникаB .

Видео:Найдите сторону треугольника на рисункеСкачать

Найдите сторону треугольника на рисунке

5. Любая сторона треугольника меньше суммы двух других сторон и больше

их разности ( a bc; b b > ac; c c > ab ).

Признаки равенства треугольников.

Треугольники равны, если у них соответственно равны:

a ) две стороны и угол между ними;

b ) два угла и прилегающая к ним сторона;

Признаки равенства прямоугольных треугольников.

Д ва прямоугольных треугольника равны, если выполняется одно из следующих условий:

1) равны их катеты;

2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;

3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;

4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;

5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

Замечательные линии и точки в треугольнике.

Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке , называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника ( точка O , рис.26 ) расположен внутри треугольника, а ортоцентр тупоугольного треугольника ( точка O , рис.27 ) снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Как соотносятся стороны треугольника

Медиана – это отрезок , соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника ( AD , BE , CF , рис.28 ) пересекаются в одной точке O , всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника ( AD , BE , CF , рис.29 ) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»).

Как соотносятся стороны треугольника

Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам ; например, на рис.29 AE : CE = AB : BC .

Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС ( KO , MO , NO , рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга ( точки K , M , N – середины сторон треугольника ABC ).

Как соотносятся стороны треугольника

В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a , b и гипотенузой c .

Как соотносятся стороны треугольника

Построим квадрат AKMB , используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF , сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна ( a + b ) 2 . С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB , то есть

и окончательно имеем:

Соотношение сторон в произвольном треугольнике.

В общем случае ( для произвольного треугольника ) имеем:

где C – угол между сторонами a и b .

Copyright © 2004 — 2012 Др. Юрий Беренгард. All rights reserved.

Треугольник. Соотношения между углами и сторонами треугольника.

Теорема.

Если любую сторону треугольника продолжить в одном направлении, то образовавшийся при этом внешний угол больше каждого внутреннего угла, не смежного с ним.

Следствие из теоремы.

Если в треугольнике один из углов прямой или тупой, то два других угла будут острые.

Теорема. В любом треугольнике:

1. Напротив равных сторон расположены одинаковые углы.

2. Напротив большей стороны расположен больший угол.

Следствия из теоремы.

2. В разностороннем треугольнике одинаковых углов нет.

Обратные теоремы. В каждом треугольнике:

1. Напротив одинаковых углов расположены одинаковые стороны.

2. Напротив большего угла расположена большая сторона.

Следствия

1. Равноугольный треугольник является и равносторонним.

2. В треугольнике сторона, расположенная напротив тупого или прямого угла, больше других сторон.

Поделиться или сохранить к себе: