- Задача
- Подсказка 1
- Подсказка 2
- Подсказка 3
- Решение
- Послесловие
- Как провести перпендикуляры в окружности
- Одной линейкой
- Задача
- Подсказка 1
- Подсказка 2
- Подсказка 3
- Решение
- Послесловие
- Планиметрия (прямая и окружность)
- 1.1 Построить угол 60° с заданой стороной
- 1.2 Построить серединный перпендикуляр к отрезку
- 1.3 Середина отрезка
- 1.4 Окружность, вписанная в квадрат
- 1.6 Найти центр окружности
- 1.7 Квадрат, вписанный в окружность
- Задача Наполеона
- Как провести перпендикуляр к прямой — правило построения
- Использование транспортира
- Циркуль и линейка
- Теорема Пифагора
- Узнать ещё
- Как перпендикуляр делит диаметр
Видео:Перпендикуляр к прямой через заданную точку.Скачать
Задача
Даны окружность с центром О и точка А вне окружности. а) Проведен диаметр окружности. Пользуясь только линейкой*, опустите перпендикуляр из точки А на этот диаметр. б) Через точку А проведена прямая, не имеющая общих точек с окружностью. Пользуясь только линейкой, опустите перпендикуляр из точки О на эту прямую.
*Примечание. Под «линейкой» в задачах на построение всегда подразумевается не измерительный инструмент, а геометрический — с его помощью можно только проводить прямые (через две имеющиеся точки), но не измерять расстояние между точками. Кроме того, геометрическая линейка считается односторонней — с ее помощью нельзя провести параллельную прямую, просто приложив одну сторону линейки к двум точкам и проведя линию вдоль другой стороны.
Видео:Геометрия Перпендикуляр, опущенный из точки окружности на ее диаметр, делит его на два отрезка, одинСкачать
Подсказка 1
Используйте концы диаметра, а не центр окружности.
Видео:Теорема о диаметре, перпендикулярном хордеСкачать
Подсказка 2
Угол с вершиной на окружности, опирающийся на ее диаметр, — прямой. Зная это, вы можете построить две высоты в треугольнике, образованном концами диаметра и точкой А.
Видео:№668. Докажите, что перпендикуляр, проведенный из какой-нибудь точки окружности к диаметру, естьСкачать
Подсказка 3
Попробуйте решить сначала более простой случай, чем заданный в пункте б), — когда данная прямая пересекает окружность.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Решение
а) Пусть ВС — данный диаметр (рис. 1). Для решения задачи просто вспомним первые две подсказки: если провести прямые AВ и АC, а затем соединить точки их пересечения с окружностью с нужными вершинами треугольника ABC, то получатся две высоты этого треугольника. А так как высоты треугольника пересекаются в одной точке, то прямая CH будет третьей высотой, то есть искомым перпендикуляром из А к диаметру ВС.
б) Решение этого пункта, однако, даже в том случае, который дан в третьей подсказке, не кажется более простым: да, мы можем провести диаметры, соединить их концы и получить прямоугольник ABCD (рис. 2, на котором, для простоты, точка А отмечена на окружности), но как это приближает нас к построению перпендикуляра из центра окружности?
А вот как: так как треугольник AOB равнобедренный, то перпендикуляр (высота) OK пройдет через середину K стороны AB. А значит, задача свелась к нахождению середины этой стороны. Как ни удивительно, но окружность больше нам совсем не нужна, да и точка D тоже, в общем, «лишняя». А вот отрезок CD — не лишний, но на нем нам потребуется не какая-то конкретная точка, а совершенно произвольная точка E! Если обозначить за L точку пересечения BE и AC (рис. 3), а затем продлить AE до пересечения с продолжением BC в точке M, то прямая LM — это решение всех наших забот и проблем!
Правда, очень похоже, что LM пересекает AB посередине? Это и правда так. Попробуйте доказать это. Мы же отложим доказательство до конца решения задачи.
Итак, мы научились находить середину отрезка AB, а значит, научились опускать перпендикуляр на AB из центра окружности. Но что делать с исходной задачей, в которой данная прямая не пересекает окружность, как на рис. 4?
Постараемся свести задачу к уже решенной. Это можно сделать, например, так.
Сначала построим прямую, симметричную данной относительно центра окружности. Построение понятно из рис. 5, на котором данная прямая — горизонтальная под окружностью, а построенная симметричная ей — выделена красным (две синие точки могут быть взяты на окружности совершенно произвольно). Заодно проведем через центр О еще одну прямую, перпендикулярную к одной из сторон получившегося в окружности прямоугольника, чтобы получить на данной прямой два равных по длине отрезка.
Имея две параллельные прямые, на одной из которых уже отмечены два конца и середина отрезка, возьмем произвольную точку T (например, на окружности) и построим такую точку S, что прямая TS будет параллельна имеющимся двум прямым. Это построение показано на рис. 6.
Тем самым мы получили хорду окружности, параллельную данной прямой, то есть свели задачу к решенной ранее версии, ведь к такой хорде проводить перпендикуляр из центра окружности мы уже умеем.
Осталось привести доказательство факта, который мы использовали выше.
Четырехугольник ABCE на рис. 3 — трапеция, L — точка пересечения ее диагоналей, а M — точка пересечения продолжений ее боковых сторон. По известному свойству трапеции (его еще называют замечательным свойством трапеции; здесь можно посмотреть, как оно доказывается) прямая ML проходит через середины оснований трапеции.
Собственно, еще раз мы фактически опирались на эту же теорему уже в последней подзадаче, когда проводили третью параллельную прямую.
Видео:ДАЖЕ В ЛИЦЕЕ НЕ РЕШИЛИ! Одной линейкой перпендикуляр!Скачать
Послесловие
Теория геометрических построений одной линейкой, когда задана вспомогательная окружность с центром, разработана замечательным немецким геометром XIX века Якобом Штейнером (правильнее произносить его фамилию Steiner как «Штайнер», но в отечественной литературе уже давно закрепилось написание с двумя «е»). О его математических достижениях мы уже однажды рассказывали в задаче «Короче, Склифосовский». В книге «Геометрические построения, выполняемые с помощью прямой линии и неподвижного круга» Штейнер доказал теорему, согласно которой любое построение, которое может быть выполнено с помощью циркуля и линейки, может быть выполнено и без циркуля, если задана всего одна окружность и отмечен ее центр. Доказательство Штейнера сводится к демонстрации возможности осуществления базовых построений, обычно выполняемых с помощью циркуля, — в частности, к проведению параллельных и перпендикулярных прямых. Наша задача, как легко видеть, является частным случаем этой демонстрации.
Впрочем, к некоторым задачам Штейнер привел не единственный способ решения. Приведем второй способ и мы.
Возьмем на данной прямой две произвольные точки A и B (рис. 7). Сначала строим перпендикуляр из A на (синюю) прямую BO — это фактически решение нашей первой задачи, потому что эта прямая содержит диаметр окружности; все соответствующие построения на рис. 7 выполнены синим цветом. Затем строим перпендикуляр из B на (зеленую) прямую AO — это точно такое же решение точно такой же задачи, построения выполнены зеленым цветом. Тем самым мы получили две высоты треугольника AOB. Третья высота этого треугольника проходит через центр O и точку пересечения двух других высот. Она и является искомым перпендикуляром к прямой AB.
Но и это еще не все. Несмотря на всю (относительную) простоту второго способа, он «избыточно длинный». Это означает, что существует другой способ построения, требующий меньшего числа операций (в задачах на построение каждая линия, проведенная циркулем или линейкой, считается как одна операция). Построения, требующие минимального среди известных количества операций, французский математик Эмиль Лемуан (Émile Lemoine, 1840–1912) назвал геометрографическими (см.: Geometrography).
Итак, вашему вниманию предлагается геометрографическое решение пункта б). Оно требует всего 10 шагов, при этом шесть первых — «естественные», а следующие три — «удивительные». Самый последний шаг, проведение перпендикуляра, пожалуй, тоже следует назвать естественным.
Мы хотим провести красный пунктирный перпендикуляр (рис. 8), для этого нам нужно отыскать на нем какую-нибудь точку, отличную от О. Поехали.
1) Пусть A — произвольная точка на прямой, а C — произвольная точка на окружности. Проводим прямую AC.
2)–3) Проводим диаметр OC (вторично пересекающий окружность в точке D) и прямую AD. Отмечаем вторые точки пересечения прямых AC и AD с окружностью — B и E, соответственно.
4)–6) Проводим BE, BD и CE. Прямые CD и BE пересеклись в точке H, а BD и CE — в точке G (рис. 9).
Кстати, а могло ли случиться так, что BE оказалось бы параллельно CD? Да, безусловно. В случае, когда диаметр CD перпендикулярен AO, то именно так и случается: BE и CD параллельны, а точки A, O и G лежат на одной прямой. Но возможность брать точку C произвольно предполагает наше умение выбрать ее так, чтобы CO и AO не были перпендикулярны!
И вот теперь обещанные удивительные шаги построения:
7) Проводим GH до пересечения с данной прямой в точке I.
8) Проводим CI до пересечения с окружностью в точке J.
9) Проводим BJ, которая пересекается с GH. где? Правильно, в красной точке, которая находится на вертикальном диаметре окружности (рис. 10).
10) Проводим вертикальный диаметр.
Вместо шага 8 можно было бы провести прямую DI, а затем на шаге 9 соединить вторую точку ее пересечения с окружностью с точкой E. Результат был бы той же самой красной точкой. Правда, это удивительно? Причем, даже неясно, что удивляет сильнее — то, что красная точка оказывается одной и той же для двух способов построения, или то, что она лежит на искомом перпендикуляре. Впрочем, геометрия — это ведь не «искусство факта», а «искусство доказательства». Так что постарайтесь доказать это.
Мелкая придирка не по существу:
> правильнее произносить его фамилию Steiner как «Штайнер», но в
> отечественной литературе уже давно закрепилось написание с двумя «е»
— ничего подобного. Так принято передавать немецкое -ei- для всех персон примерно до середины XX века. Причины этого не вполне понятны: фонетический переход -ei- в [-ai-] произошел за много веков до появления этой традиции транскрипции на русский
(в отличие, например, от перехода -ille- из [iλ] в [ij]: Марсель, Гильом — который произошел лишь в XIX веке, когда русская транскрипция уже устоялась).
Но по какой бы причине русская транскрипция с немецкого ни оказалась отстающей от реальной фонетики на много веков, она именно такова. Передавать Штейнера и прочих немцев XIX века через -ай- было бы анахронизмом. Не говоря уже о том, что Штейнер, помимо немецкой, еще и распространенная в России и других странах идишская фамилия, а их принято передавать через -ей- и по сей день.
А по существу вопрос: теорема гласит, что «любое построение, которое может быть выполнено с помощью циркуля и линейки, может быть выполнено и без циркуля, если задана всего одна окружность и отмечен ее центр».
Что имеется в виду под «если задана всего одна окружность»? Имеется ли в виду, что в задаче дана только одна окружность, и задание центра позволяет построить линейкой все то, что можно построить циркулем? Или имеется в виду, что берем любую задачу (скажем, деление отрезка пополам), и достаточно где-нибудь в произвольном месте задать окружность и ее центр, чтобы задача деления отрезка пополам решалась одной линейкой?
Да, имеется в виду ровно это. На плоскости чертежа задана произвольная окружность и ее центр. Это позволяет выполнить одной линейкой всё, что можно сделать циркулем и линейкой.
А деление отрезка пополам и так решается одной линейкой (без вспомогательной окружности). Вот одним циркулем — не решается.
> А деление отрезка пополам и так решается одной линейкой (без вспомогательной окружности
Допускаю, хотя не знаю такого способа.
> Вот одним циркулем — не решается.
Этого не может быть. По теореме Мора-Маскерони.
Этого противоречит вашим словам, будто линейкой можно построить середину отрезка.
Вот смотрите: если мы можем одной линейкой построить касательную к окружности из точки A, значит, возьмем две такие касательные. Проведем хорду, опирающуюся на две точки касания.
По вашим словам (выше), одной линейкой можно найти середину отрезка, а значит, и этой хорды.
Из исходной точки A через середину хорды проведем прямую. Это будет (продолженный) диаметр окружности.
Возьмем произвольную точку B и повторим с ней и той же окружностью то же самое. Получим второй диаметр.
Два диаметра дают нам центр окружности.
Итого получается, что если, как вы утверждаете, одной линейкой можно построить и касательную из заданной точки к заданной окружности, и середину заданного отрезка, то одной линейкой можно построить и центр данной окружности. Однако хорошо известно (доказано, по-моему, тем же Штейнером через сечения наклонного конуса), что это невозможно. А если б было возможно, то рассказанная вами теорема Штейнера-Понселе не имела бы смысла: получается, любое построение циркулем и линейкой можно было бы совершить просто линейкой безо всяких дополнительных условий (или точнее, требовалось бы иметь где-то окружность не обязательно с отмеченным центром).
Касательную одной линейкой точно можно построить, и это ничему не противоречит.
Что касается утверждения о построении середины отрезка, я хотел сказать вот что: для этого не нужно иметь вспомогательную окружность, достаточно иметь вспомогательную параллельную прямую.
Да, это тоже исследовано Штейнером. Он рассмотрел списки задач, разрешимых линейкой при следующих дополнительных условиях
а) дана одна параллельная прямая или отрезок, разделенный в известном рациональном отношении
б) даны две пары параллельных прямых, или два отрезка, деленные в рац. отношениях, или одна пара параллельных и один такой отрезок
в) дан вспомогательный квадрат
Все эти условия позволяют решать линейкой какой-то класс задач на построение, причем а) Ответить
Тогда и задача немного другая, и решение другое. Фактически в вашей задаче требуется построить квадрат по заданным противоположным вершинам (B и C).
PS. Насчет касательных. Да, конечно, построение не очень короткое — в сумме явно больше 15 линий получится. Через точку пересечения высот — экономнее
Видео:Окружность. 7 класс.Скачать
Как провести перпендикуляры в окружности
Видео:Построение перпендикуляра к прямойСкачать
Одной линейкой
Видео:Построение перпендикуляраСкачать
Задача
Даны окружность с центром О и точка А вне окружности. а) Проведен диаметр окружности. Пользуясь только линейкой*, опустите перпендикуляр из точки А на этот диаметр. б) Через точку А проведена прямая, не имеющая общих точек с окружностью. Пользуясь только линейкой, опустите перпендикуляр из точки О на эту прямую.
*Примечание. Под «линейкой» в задачах на построение всегда подразумевается не измерительный инструмент, а геометрический — с его помощью можно только проводить прямые (через две имеющиеся точки), но не измерять расстояние между точками. Кроме того, геометрическая линейка считается односторонней — с ее помощью нельзя провести параллельную прямую, просто приложив одну сторону линейки к двум точкам и проведя линию вдоль другой стороны.
Видео:№796. Из концов диаметра CD данной окружности проведены перпендикуляры СС1 и DD1 к касательнойСкачать
Подсказка 1
Используйте концы диаметра, а не центр окружности.
Видео:Как провести перпендикуляр в данную точку на прямой с помощью циркуляСкачать
Подсказка 2
Угол с вершиной на окружности, опирающийся на ее диаметр, — прямой. Зная это, вы можете построить две высоты в треугольнике, образованном концами диаметра и точкой А.
Видео:Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать
Подсказка 3
Попробуйте решить сначала более простой случай, чем заданный в пункте б), — когда данная прямая пересекает окружность.
Видео:ОГЭ. Математика. Задание 26 | Перпендикуляр в окружности | Борис Трушин |Скачать
Решение
а) Пусть ВС — данный диаметр (рис. 1). Для решения задачи просто вспомним первые две подсказки: если провести прямые AВ и АC, а затем соединить точки их пересечения с окружностью с нужными вершинами треугольника ABC, то получатся две высоты этого треугольника. А так как высоты треугольника пересекаются в одной точке, то прямая CH будет третьей высотой, то есть искомым перпендикуляром из А к диаметру ВС.
б) Решение этого пункта, однако, даже в том случае, который дан в третьей подсказке, не кажется более простым: да, мы можем провести диаметры, соединить их концы и получить прямоугольник ABCD (рис. 2, на котором, для простоты, точка А отмечена на окружности), но как это приближает нас к построению перпендикуляра из центра окружности?
А вот как: так как треугольник AOB равнобедренный, то перпендикуляр (высота) OK пройдет через середину K стороны AB. А значит, задача свелась к нахождению середины этой стороны. Как ни удивительно, но окружность больше нам совсем не нужна, да и точка D тоже, в общем, «лишняя». А вот отрезок CD — не лишний, но на нем нам потребуется не какая-то конкретная точка, а совершенно произвольная точка E! Если обозначить за L точку пересечения BE и AC (рис. 3), а затем продлить AE до пересечения с продолжением BC в точке M, то прямая LM — это решение всех наших забот и проблем!
Правда, очень похоже, что LM пересекает AB посередине? Это и правда так. Попробуйте доказать это. Мы же отложим доказательство до конца решения задачи.
Итак, мы научились находить середину отрезка AB, а значит, научились опускать перпендикуляр на AB из центра окружности. Но что делать с исходной задачей, в которой данная прямая не пересекает окружность, как на рис. 4?
Постараемся свести задачу к уже решенной. Это можно сделать, например, так.
Сначала построим прямую, симметричную данной относительно центра окружности. Построение понятно из рис. 5, на котором данная прямая — горизонтальная под окружностью, а построенная симметричная ей — выделена красным (две синие точки могут быть взяты на окружности совершенно произвольно). Заодно проведем через центр О еще одну прямую, перпендикулярную к одной из сторон получившегося в окружности прямоугольника, чтобы получить на данной прямой два равных по длине отрезка.
Имея две параллельные прямые, на одной из которых уже отмечены два конца и середина отрезка, возьмем произвольную точку T (например, на окружности) и построим такую точку S, что прямая TS будет параллельна имеющимся двум прямым. Это построение показано на рис. 6.
Тем самым мы получили хорду окружности, параллельную данной прямой, то есть свели задачу к решенной ранее версии, ведь к такой хорде проводить перпендикуляр из центра окружности мы уже умеем.
Осталось привести доказательство факта, который мы использовали выше.
Четырехугольник ABCE на рис. 3 — трапеция, L — точка пересечения ее диагоналей, а M — точка пересечения продолжений ее боковых сторон. По известному свойству трапеции (его еще называют замечательным свойством трапеции; здесь можно посмотреть, как оно доказывается) прямая ML проходит через середины оснований трапеции.
Собственно, еще раз мы фактически опирались на эту же теорему уже в последней подзадаче, когда проводили третью параллельную прямую.
Видео:Свойство диаметра окружности. 7 класс.Скачать
Послесловие
Теория геометрических построений одной линейкой, когда задана вспомогательная окружность с центром, разработана замечательным немецким геометром XIX века Якобом Штейнером (правильнее произносить его фамилию Steiner как «Штайнер», но в отечественной литературе уже давно закрепилось написание с двумя «е»). О его математических достижениях мы уже однажды рассказывали в задаче «Короче, Склифосовский». В книге «Геометрические построения, выполняемые с помощью прямой линии и неподвижного круга» Штейнер доказал теорему, согласно которой любое построение, которое может быть выполнено с помощью циркуля и линейки, может быть выполнено и без циркуля, если задана всего одна окружность и отмечен ее центр. Доказательство Штейнера сводится к демонстрации возможности осуществления базовых построений, обычно выполняемых с помощью циркуля, — в частности, к проведению параллельных и перпендикулярных прямых. Наша задача, как легко видеть, является частным случаем этой демонстрации.
Впрочем, к некоторым задачам Штейнер привел не единственный способ решения. Приведем второй способ и мы.
Возьмем на данной прямой две произвольные точки A и B (рис. 7). Сначала строим перпендикуляр из A на (синюю) прямую BO — это фактически решение нашей первой задачи, потому что эта прямая содержит диаметр окружности; все соответствующие построения на рис. 7 выполнены синим цветом. Затем строим перпендикуляр из B на (зеленую) прямую AO — это точно такое же решение точно такой же задачи, построения выполнены зеленым цветом. Тем самым мы получили две высоты треугольника AOB. Третья высота этого треугольника проходит через центр O и точку пересечения двух других высот. Она и является искомым перпендикуляром к прямой AB.
Но и это еще не все. Несмотря на всю (относительную) простоту второго способа, он «избыточно длинный». Это означает, что существует другой способ построения, требующий меньшего числа операций (в задачах на построение каждая линия, проведенная циркулем или линейкой, считается как одна операция). Построения, требующие минимального среди известных количества операций, французский математик Эмиль Лемуан (Émile Lemoine, 1840–1912) назвал геометрографическими (см.: Geometrography).
Итак, вашему вниманию предлагается геометрографическое решение пункта б). Оно требует всего 10 шагов, при этом шесть первых — «естественные», а следующие три — «удивительные». Самый последний шаг, проведение перпендикуляра, пожалуй, тоже следует назвать естественным.
Мы хотим провести красный пунктирный перпендикуляр (рис. 8), для этого нам нужно отыскать на нем какую-нибудь точку, отличную от О. Поехали.
1) Пусть A — произвольная точка на прямой, а C — произвольная точка на окружности. Проводим прямую AC.
2)–3) Проводим диаметр OC (вторично пересекающий окружность в точке D) и прямую AD. Отмечаем вторые точки пересечения прямых AC и AD с окружностью — B и E, соответственно.
4)–6) Проводим BE, BD и CE. Прямые CD и BE пересеклись в точке H, а BD и CE — в точке G (рис. 9).
Кстати, а могло ли случиться так, что BE оказалось бы параллельно CD? Да, безусловно. В случае, когда диаметр CD перпендикулярен AO, то именно так и случается: BE и CD параллельны, а точки A, O и G лежат на одной прямой. Но возможность брать точку C произвольно предполагает наше умение выбрать ее так, чтобы CO и AO не были перпендикулярны!
И вот теперь обещанные удивительные шаги построения:
7) Проводим GH до пересечения с данной прямой в точке I.
8) Проводим CI до пересечения с окружностью в точке J.
9) Проводим BJ, которая пересекается с GH. где? Правильно, в красной точке, которая находится на вертикальном диаметре окружности (рис. 10).
10) Проводим вертикальный диаметр.
Вместо шага 8 можно было бы провести прямую DI, а затем на шаге 9 соединить вторую точку ее пересечения с окружностью с точкой E. Результат был бы той же самой красной точкой. Правда, это удивительно? Причем, даже неясно, что удивляет сильнее — то, что красная точка оказывается одной и той же для двух способов построения, или то, что она лежит на искомом перпендикуляре. Впрочем, геометрия — это ведь не «искусство факта», а «искусство доказательства». Так что постарайтесь доказать это.
Мелкая придирка не по существу:
> правильнее произносить его фамилию Steiner как «Штайнер», но в
> отечественной литературе уже давно закрепилось написание с двумя «е»
— ничего подобного. Так принято передавать немецкое -ei- для всех персон примерно до середины XX века. Причины этого не вполне понятны: фонетический переход -ei- в [-ai-] произошел за много веков до появления этой традиции транскрипции на русский
(в отличие, например, от перехода -ille- из [iλ] в [ij]: Марсель, Гильом — который произошел лишь в XIX веке, когда русская транскрипция уже устоялась).
Но по какой бы причине русская транскрипция с немецкого ни оказалась отстающей от реальной фонетики на много веков, она именно такова. Передавать Штейнера и прочих немцев XIX века через -ай- было бы анахронизмом. Не говоря уже о том, что Штейнер, помимо немецкой, еще и распространенная в России и других странах идишская фамилия, а их принято передавать через -ей- и по сей день.
А по существу вопрос: теорема гласит, что «любое построение, которое может быть выполнено с помощью циркуля и линейки, может быть выполнено и без циркуля, если задана всего одна окружность и отмечен ее центр».
Что имеется в виду под «если задана всего одна окружность»? Имеется ли в виду, что в задаче дана только одна окружность, и задание центра позволяет построить линейкой все то, что можно построить циркулем? Или имеется в виду, что берем любую задачу (скажем, деление отрезка пополам), и достаточно где-нибудь в произвольном месте задать окружность и ее центр, чтобы задача деления отрезка пополам решалась одной линейкой?
Да, имеется в виду ровно это. На плоскости чертежа задана произвольная окружность и ее центр. Это позволяет выполнить одной линейкой всё, что можно сделать циркулем и линейкой.
А деление отрезка пополам и так решается одной линейкой (без вспомогательной окружности). Вот одним циркулем — не решается.
> А деление отрезка пополам и так решается одной линейкой (без вспомогательной окружности
Допускаю, хотя не знаю такого способа.
> Вот одним циркулем — не решается.
Этого не может быть. По теореме Мора-Маскерони.
Этого противоречит вашим словам, будто линейкой можно построить середину отрезка.
Вот смотрите: если мы можем одной линейкой построить касательную к окружности из точки A, значит, возьмем две такие касательные. Проведем хорду, опирающуюся на две точки касания.
По вашим словам (выше), одной линейкой можно найти середину отрезка, а значит, и этой хорды.
Из исходной точки A через середину хорды проведем прямую. Это будет (продолженный) диаметр окружности.
Возьмем произвольную точку B и повторим с ней и той же окружностью то же самое. Получим второй диаметр.
Два диаметра дают нам центр окружности.
Итого получается, что если, как вы утверждаете, одной линейкой можно построить и касательную из заданной точки к заданной окружности, и середину заданного отрезка, то одной линейкой можно построить и центр данной окружности. Однако хорошо известно (доказано, по-моему, тем же Штейнером через сечения наклонного конуса), что это невозможно. А если б было возможно, то рассказанная вами теорема Штейнера-Понселе не имела бы смысла: получается, любое построение циркулем и линейкой можно было бы совершить просто линейкой безо всяких дополнительных условий (или точнее, требовалось бы иметь где-то окружность не обязательно с отмеченным центром).
Касательную одной линейкой точно можно построить, и это ничему не противоречит.
Что касается утверждения о построении середины отрезка, я хотел сказать вот что: для этого не нужно иметь вспомогательную окружность, достаточно иметь вспомогательную параллельную прямую.
Да, это тоже исследовано Штейнером. Он рассмотрел списки задач, разрешимых линейкой при следующих дополнительных условиях
а) дана одна параллельная прямая или отрезок, разделенный в известном рациональном отношении
б) даны две пары параллельных прямых, или два отрезка, деленные в рац. отношениях, или одна пара параллельных и один такой отрезок
в) дан вспомогательный квадрат
Все эти условия позволяют решать линейкой какой-то класс задач на построение, причем а) Ответить
Тогда и задача немного другая, и решение другое. Фактически в вашей задаче требуется построить квадрат по заданным противоположным вершинам (B и C).
PS. Насчет касательных. Да, конечно, построение не очень короткое — в сумме явно больше 15 линий получится. Через точку пересечения высот — экономнее
Видео:Геометрия Перпендикуляр опушенный из точки окружности на ее диаметр делит диаметр на два отрезкаСкачать
Планиметрия (прямая и окружность)
Планиметрия изучется в начальном курсе геометрии и зачастую сводится к решению практических задач без изучения теоретической базы.
В данной статье приводятся альтернативные (подсказкам) решения задач из первого раздела (кроме 1.5) приложения Euclidea (геометрические построения с помощью циркуля и линейки).
Решения задач 1.1, 1.2 и 1.3 основаны на том, что с помощью циркуля и линейки можно построить равносторонний треугольник.
1.1 Построить угол 60° с заданой стороной
1.2 Построить серединный перпендикуляр к отрезку
На данной ограниченной прямой построить равносторонний треугольник
1.3 Середина отрезка
всё, что можно построить с помощью циркуля и линейки, может быть построено с помощью одного циркуля.
Из точки В радиусом АВ описываем окружность.
По этой окружности откладываем от точки А расстояние АВ три раза: получаем точку С, очевидно, диаметрально противоположную А. Расстояние АС представляет собой двойное рассрастояние АВ. Проведя окружность из С радиусом ВС, мы можем таким же образом найти точку,
диаметрально противоположную В и, следовательно, удаленную от А на
тройное расстояние АВ, и т. д.
любое построение, выполнимое на плоскости циркулем и линейкой, можно выполнить одной линейкой, если нарисована хотя бы одна окружность и отмечен её центр.
Проведем прямые PA и PB и отметим точки D и C их пересечения прямой b. Пусть О — точка пересечения прямых AC и BD. Тогда, согласно предыдущей лемме, прямая PO пересечёт отрезок AB в его середине M.
Решением задачи 1.3 по методу Штейнера-Понеселе будет:
1.4 Окружность, вписанная в квадрат
Из точки A, лежащей вне данной полуокружности, опустить на её диаметр перпендикуляр, обходясь при этом без циркуля. Положение центра полуокружности не указано.
Нам пригодится здесь то свойство треугольника, что все его высоты пересекаются в одной точке. Соединим A с B и C; получим точки D и E. Прямые BE и CD, очевидно, — высоты треугольника ABC. Третья высота — искомый перпендикуляр к BC — должна проходить через пересечение двух других, т.е. через точку M. Проведя по линейке прямую через точки A и M, мы выполним требованиек задачи, не прибегая к услугам циркуля.
И опустив перпендикуляр из точки пересечения диагоналей квадрата на ребро, найдём середину ребра.
Это же построение можно использовать для решения задачи 2.9 Окружность, касающаяся прямой
1.6 Найти центр окружности
Плоский угол, опирающийся на диаметр окружности, — прямой.
Определение: касательной к окружности называется прямая, имеющая с окружностью одну общую точку. Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.
Рассмотрим задачу 2.8
2.8 Касательная к окружности в точке
Возвращаясь к предыдущей задаче, эту задачу можно решить построив угол, опирающийся на диаметр окружности по теореме Фалеса
Далее, построив перпендикуляр к касательной, найдём диаметр окружности, и, разделив его пополам, найдём центр окружности.
Ещё об одном способе построения касательной к окружности можно узнать из лекции 1.5 курса «Геометрия и группы» А. Савватеева ссылка
1.7 Квадрат, вписанный в окружность
Задача Наполеона
Решим задачу методом Мора-Маскерони.
Построим три окружности радиусом r и две окружности радиусом
В приложении нет такой операции, как перенос раствора циркуля (равного MO), поэтому необходимо использовать дополнительные построения.
Для того, чтобы построить касательную к исходной окружности, параллельную МО, необходимо произвести построения, которые были приведены выше (построить три окружности радиусом r и две окружности радиусом ), но вместо исходной окружности взять окружность, обозначенную на рисунке синим цветом
Т.о. мы перенесли раствор циркуля (равный МО) в точку А.
Далее из точки А необходимо провести окружность c радиусом МО
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать
Как провести перпендикуляр к прямой — правило построения
Перпендикуляр — это прямая линия, пересекающая другую линию под углом 90°. Построением перпендикуляров на начальном уровне занимаются школьники на уроке геометрии. В будущем эти знания могут пригодиться как в быту, так и в профессиональной сфере. Чтобы правильно провести перпендикуляр к прямой, рекомендуется изучить все возможные способы. Они подразделяются на простые и сложные. Кроме того, для каждого из них потребуются определенные канцелярские принадлежности.
Видео:Построение окружности по трём точкам.Скачать
Использование транспортира
Одним из наиболее простых способов построения перпендикуляра к прямой является чертеж при помощи специального инструмента, который называется транспортир. Чтобы правильно начертить отрезок, необходимо по пунктам выполнить следующие действия:
Этот способ широко используется на уроках геометрии. Его преимущество заключается в быстром и простом построении. Для выполнения требуется только транспортир и простой карандаш.
Видео:Длина окружности. Математика 6 класс.Скачать
Циркуль и линейка
Перпендикулярный луч можно опустить на отрезок при помощи еще одного незамысловатого способа. Для этого необходимы простой карандаш, линейка и циркуль. Построить прямой угол можно, выполнив следующие действия:
В результате этих действий должен получиться перпендикуляр, составляющий с прямой линией угол в 90°. Метод более сложный, если сравнивать его с первым. Его целесообразно использовать в том случае, если под рукой не оказалось транспортира.
Видео:Построение касательной к окружностиСкачать
Теорема Пифагора
Чтобы построить перпендикуляр по этому способу, мало знать одного определения, поскольку потребуется теорема Пифагора и ее доказательство. Наиболее распространенный вариант — свойство египетского треугольника со сторонами 5, 4 и 3.
От основной точки А необходимо отмерить и отметить отрезок, равный 3. В результате получается точка В. Далее необходимо построить две одинаковые окружности. При этом центр первой будет располагаться в А, а центр второй — в В. Отметка пересечения этих окружностей обозначается как С. Значит, искомый перпендикуляр — это линия, соединяющая две точки (А и С). Конечно, этот способ лучше посмотреть наглядно на картинке или показать в виде чертежа.
Эту тему проходят на геометрии в 7 классе. Школьники должны дать определение перпендикуляра к прямой. А на его основании построить линию его под углом 90°.
Видео:№667. Диаметр АА1 окружности перпендикулярен к хорде ВВ1 и пересекает ее в точке С. Найдите BB1Скачать
Узнать ещё
Знание — сила. Познавательная информация
Как перпендикуляр делит диаметр
Если в задаче дан перпендикуляр, опущенный из точки окружности на ее диаметр, чтобы выяснить, как перпендикуляр делит диаметр, и найти связь между полученными отрезками и длиной перпендикуляра, необходимо выполнить дополнительное построение.
Пусть AB — диаметр окружности, С — точка окружности, а CD — перпендикуляр, проведенный из точки С к диаметру.
Соединим точку С с концами диаметра. Угол ACB — прямой (как опирающийся на диаметр). Следовательно, треугольник ABC — прямоугольный, а CD в нем — высота, проведенная к гипотенузе.
Отсюда следует, перпендикуляр CD и отрезки AD и BD, на которые он делит диаметр — пропорциональные отрезки в прямоугольном треугольнике . А значит, они связаны соотношением:
Кроме того, в треугольнике ABC
Перпендикуляр, опущенный из точки окружности на ее диаметр, делит диаметр на отрезки, разность которых равна 21 см. Найти радиус окружности, если длина перпендикуляра 10 см.
Проведем отрезки AC и BC.
∠ ACB=90 º (как вписанный угол, опирающийся на диаметр). Тогда в прямоугольном треугольнике ABC СD — высота, проведенная к гипотенузе. Поэтому
Пусть AD=x см, тогда BD=x+21см. Составляем уравнение:
Возведем в квадрат обе части:
Второй корень — посторонний, так как длина отрезка не может быть отрицательным числом. Значит, диаметр AB=AD+BD=4+4+21=29см, а радиус равен половине диаметра, то есть r=14,5см.