Содержание:
В очертаниях технических форм часто встречаются плавные переходы от од- ной линии к другой. Плавный переход одной линии в другую, выполненный при помощи промежуточной линии, называется сопряжением. Построение сопряжений основано на следующих положениях геометрии.
- Переход окружности в прямую будет плавным только тогда, когда заданная прямая является касательной к окружности (рис. 11а). Радиус окружности, проведенный в точку касания К, перпендикулярен к касательной прямой.
- Переход от одной окружности к другой в точке К только тогда будет плавным, когда окружности имеют в данной точке общую касательную (рис. 11б).
Точка касания К и центры окружностей
- Центром сопряжения О называется точка, равноудаленная от сопрягаемых линий (рис. 12).
- Точкой сопряжения А (В) называется точка касания двух сопрягаемых линий (рис. 12).
- Дуга сопряжения АВ – это дуга окружности, с помощью которой выполняется сопряжение (рис. 12).
- Радиус сопряжения R – это радиус дуги сопряжения (рис. 12).
Для выполнения сопряжений необходимо определить три элемента построения: 1) радиус сопряжения; 2) центр сопряжения; 3) точки сопряжения.
- Сопряжение двух пересекающихся прямых линий
- Сопряжения прямой с окружностью
- Сопряжение двух окружностей
- Построение касательных
- Две окружности на плоскости. Общие касательные к двум окружностям
- Взаимное расположение двух окружностей
- Формулы для длин общих касательных и общей хорды двух окружностей
- Доказательства формул для длин общих касательных и общей хорды двух окружностей
- Построение общей внутренней касательной к двум окружностям
- 📸 Видео
Видео:Внешняя касательная к двум окружностямСкачать
Сопряжение двух пересекающихся прямых линий
Пусть даны две пересекающиеся прямые m, n и радиус сопряжения R (рис. 12). Необходимо построить сопряжение данных прямых дугой окружности радиусом R.
Выполним следующие построения:
- Построим множество точек центров сопряжения, удаленных от прямой n на расстояние радиуса R сопряжения. Таким множеством является прямая параллельная данной прямой n и отстоящая от неё на расстояние R.
- Построим множество точек центров сопряжения, удаленных от прямой m на расстояние радиуса сопряжения. Таким множеством является прямая параллельная m и отстоящая от последней на расстояние R.
- В пересечении построенных прямых найдем центр сопряжения О.
- Определим точку А сопряжения на прямой n. Для этого опустим из центра О перпендикуляр на прямую n . Для определения точки сопряжения В на прямой m необходимо опустить соответственно перпендикуляр из центра О на прямую m.
Проведем дугу сопряжения AB. Теперь будут определены все элементы сопряжения: радиус, центр и точки сопряжения.
Видео:Построение касательной к окружностиСкачать
Сопряжения прямой с окружностью
Сопряжение прямой с окружностью может быть внешним или внутренним. Рассмотрим построение внешнего сопряжения прямой с окружностью.
Пример 1. Пусть задана окружность радиусом R с центром в точке и прямая m. Требуется построить сопряжение окружности с прямой дугой окружности заданного радиуса R (рис. 13).
Для решения задачи выполним следующие построения:
- Построим множество точек центров сопряжения, удаленных от сопрягаемой прямой на расстояние R. Это множество задает прямая параллельная m и отстоящая от неё на расстояние R.
- Множество точек центров сопряжения, удаленных от окружности n на рас- стояние R, есть окружность проведенная радиусом
- Центр сопряжения О находим как точку пересечения линий
- Точку сопряжения А находим как основание перпендикуляра, проведенного из точки О на прямую m. Чтобы построить точку сопряжения В, необходимо про- вести линию центров т.е. соединить центры сопряженных дуг. В пересечении линии центров с заданной окружностью определим точку В.
- Проведем дугу сопряжения АВ.
Пример 2. При построении внутреннего сопряжения (рис. 14) последовательность построений остается та же, что и в примере 1. Однако центр сопряжения определяется с помощью вспомогательной дуги окружности, проведенной из центра , радиусом
Видео:Касательные к окружностиСкачать
Сопряжение двух окружностей
Сопряжение двух окружностей может быть внешним, внутренним и смешанным. Пусть задан радиус сопряжения R, а центры сопряжения и точки сопряжения следует найти.
Пример 1. Построим сопряжение с внешним касанием двух данных окружностей m и n с радиусами дугой заданного радиуса R (рис. 15а).
- Для нахождения центра сопряжения О проведем окружность удаленную от данной окружности m на расстояние R . Так как сопряжение с внешним касанием, то радиус окружности равен
- Радиусом проведем окружность , удаленную от данной окружности n на расстояние R.
- Найдем центр сопряжения О как точку пересечения окружностей .
- Найдем точку сопряжения А как пересечение линии центров с дугой m.
- Аналогично найдем точку В как пересечение линии центров с дугой n .
- Проведем дугу сопряжения АВ.
Пример 2. Построим сопряжение с внутренним касанием двух данных окружностей m и n с радиусами дугой радиусом R (рис. 15б).
- Для нахождения центра сопряжения О проведем окружность на расстоянии от данной окружности m.
- Проведем окружность на расстоянии от данной окружности n.
- Центр сопряжения О найдем как точку пересечения окружностей
- Точку сопряжения А найдем как точку пересечения линии центров с заданной окружностью m.
- Точку сопряжения В найдем как точку пересечения линии центров c заданной окружностью n.
- Проведем дугу сопряжения AВ с центром в точке O.
Пример 3. На рис. 16 приведен пример построения сопряжения с внешне- внутренним касанием.
Видео:Построение внешней касательной к двум дугам окружностей. Урок11.(Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
Построение касательных
Пример 1. Дана окружность с центром в точке и точка вне её. Через данную точку провести касательную к данной окружности (рис. 17).
Для решения задачи выполним следующие построения.
- Соединим точку с центром окружности
- Находим середину С отрезка
- Из точки С, как из центра, проведем вспомогательную окружность радиусом
- В точке пересечения вспомогательной окружности с заданной получим точку касания А. Соединим точку с точкой А.
Пример 2. Построим общую касательную АВ к двум заданным окружностям радиусов (рис. 18).
- Находим середину С отрезка
- Из точки С, как из центра, радиусом проведем вспомогательную окружность.
- Из центра большей окружности проведем вторую вспомогательную окружность радиусом
- Пересечение двух вспомогательных окружностей определяет точку К, через которую проходит радиус идущий в точку касания В. 5. Для построения второй точки касания А проведем
- Соединим точки А и В отрезком прямой линии.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Нанесение размеров на чертежах
- Резьба на чертеже
- Соединения разъемные и неразъемные в инженерной графике
- Виды конструкторских документов
- Виды в инженерной графике
- Разрезы в инженерной графике
- Сечения в инженерной графике
- Выносные элементы в инженерной графике
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Строим касательную к окружности (Задача 3).Скачать
Две окружности на плоскости.
Общие касательные к двум окружностям
Взаимное расположение двух окружностей |
Общие касательные к двум окружностям |
Формулы для длин общих касательных и общей хорды |
Доказательства формул для длин общих касательных и общей хорды |
Видео:Как с помощью одной линейки построить касательную к окружности?Скачать
Взаимное расположение двух окружностей
Фигура | Рисунок | Свойства |
Две окружности на плоскости | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Расстояние между центрами окружностей больше суммы их радиусов | ||
Внешнее касание двух окружностей | ||
Расстояние между центрами окружностей равно сумме их радиусов | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов r1 – r2 лежит внутри другой | ||
Внутренняя касательная к двум окружностям | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Внешнее касание двух окружностей | ||
Внешняя касательная к двум окружностям | |
Внутренняя касательная к двум окружностям | |
Внутреннее касание двух окружностей | |
Окружности пересекаются в двух точках | |
Внешнее касание двух окружностей | |
Каждая из окружностей лежит вне другой | |
Внешняя касательная к двум окружностям | |||||||||||||||||||||
Внутренняя касательная к двум окружностям | |||||||||||||||||||||
Внутреннее касание двух окружностей | |||||||||||||||||||||
Окружности пересекаются в двух точках | |||||||||||||||||||||
Внешнее касание двух окружностей | |||||||||||||||||||||
Каждая из окружностей лежит вне другой | |||||||||||||||||||||
Фигура | Рисунок | Формула | ||||||||||||
Внешняя касательная к двум окружностям | ||||||||||||||
Внутренняя касательная к двум окружностям | ||||||||||||||
Общая хорда двух пересекающихся окружностей |
Внешняя касательная к двум окружностям | ||||
Внутренняя касательная к двум окружностям | ||||
Общая хорда двух пересекающихся окружностей | ||||
Внешняя касательная к двум окружностям |
Внутренняя касательная к двум окружностям |
Общая хорда двух пересекающихся окружностей |
Длина общей хорды двух окружностей вычисляется по формуле Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать Доказательства формул для длин общих касательных и общей хорды двух окружностейУтверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3, Видео:1 2 4 сопряжение окружностейСкачать Построение общей внутренней касательной к двум окружностямДаны две окружности (а это значит, что даны и их центры O1 и O2). Требуется провести общую внутреннюю касательную к ним, то есть такую касательную, от которой данные окружности лежат по разные стороны. Радиус большей окружности называем R, радиус меньшей окружности — r. Сначала вокруг меньшей окружности построим вспомогательную окружность с тем же центром и с радиусом, равным сумме радиусов двух данных окружностей (R + r). Затем построим из центра большей окружности вспомогательную касательную к вспомогательной окружности. Требуемая внутренняя касательная будет параллельна вспомогательной касательной. Отложим первый вспомогательный луч с началом в точке A. Замерим циркулем радиус большей окружности, и тем же раствором циркуля от начала первого луча отложим отрезок AB, равный R. Теперь циркулем замерим радиус меньшей окружности, и тем же раствором циркуля от точки B отложим отрезок BC, равный r. Получился отрезок AC, равный сумме радиусов двух данных окружностей (R + r). Замерим AC циркулем, и тем же раствором циркуля построим первую вспомогательную окружность с центром в O1. Теперь соединим отрезком центры O1 и O2. Произвольным раствором циркуля строим вторую вспомогательную дугу окружности с центром O1. И тем же раствором циркуля строим третью вспомогательную дугу окружности с центром O2 — так, чтобы третья дуга пересекала вторую в двух точках (называем их D и E). Соединяем D и E отрезком, который пересекает O1O2 в середине — эту точку называем F. Теперь замерим циркулем FO1 и этим раствором циркуля строим четвёртую вспомогательную окружность с центром в F на отрезке O1O2, как на диаметре. Эта четвёртая окружность пересекает первую вспомогательную окружность в двух точках (называем их G и H). Выбираем из этих двух точек ту, которая нам больше нравится (в данном построении это точка H), и соединяем прямой с точкой O2. Прямая HO2 — это касательная к первой вспомогательной окружности, проходящая через центр большой данной окружности. Прямая HO2 пересекла большую окружность в двух точках (называем их K и L). Эти точки равно отстоят от O2 и помогут нам построить перпендикуляр к HO2. Произвольным раствором циркуля проводим пятую вспомогательную дугу окружности с центром в K. Тем же раствором циркуля проводим шестую вспомогательную дугу окружности с центром в L — так, чтоб шестая дуга пересекала пятую в некоторой точке (называем точку M). Соединяем O2 и M прямой — эта прямая (перпендикуляр к HO2) пересекает большую данную окружность в некоторой точке (называем её N). Теперь через N проведём прямую, параллельную вспомогательной касательной HO2. Произвольным раствором циркуля строим седьмую вспомогательную окружность с центром в точке N — так, чтоб седьмая окружность пересекала HO2 в двух точках (точки называем P и Q). Тем же раствором циркуля строим восьмую вспомогательную окружность с центром в Q, и восьмая окружность пересекает вспомогательную касательную HO2 в двух точках (точки называем Z и S). Тем же раствором циркуля проводим девятую вспомогательную дугу окружности с центром в S — так, чтобы девятая дуга пересекала седьмую окружность в некоторой точке (точку называем T). Соединяем N и Т прямой — эта прямая NT и будет требуемой общей внутренней касательной к двум данным окружностям. И вот почему. NT проходит через конец радиуса O2N, лежащий на окружности. Также по построению NT параллельна HO2 и перпендикулярна радиусу O2N — следовательно, NT — касательная к большой данной окружности. Теперь проведём радиус O1H и точку его пересечения с прямой TN называем U. Радиус O1H перпендикулярен касательной O2H — значит, угол O2HU — прямой. Получилось, что в четырёхугольнике UHO2N есть три прямых угла — значит, и четвёртый угол HUN прямой, и UHO2N — прямоугольник, в котором сторона HU равна противоположной стороне O2N, то есть радиусу R. Теперь можем найти длину отрезка O1U (составляющего вместе с UH отрезок O1H). Длина равна разности длин O1H и HU, то есть (r + R) — R = r. Выходит, что U отстоит от O1 на r, то есть U лежит на меньшей данной окружности, а это значит, что TN, проходящая через U — проходит через конец радиуса O1U, лежащий на окружности, и перпендикулярна радиусу, то есть TN — касательная к меньшей данной окружности. Построение закончено. 📸 ВидеоArtCAM, касательные (тангенциальный) линии для двух окружностейСкачать Внутренняя касательная к двум окружностямСкачать Касательные к двум окружностям.Скачать Построение касательной двум окружностям внешнего касанияСкачать Сопряжение двух окружностей по касательной прямойСкачать Построение общей внешней касательной к двум окружностямСкачать Радиус м-а-а-а-ленькой такой окружности. А ДОМАШКА - ВЕЩЬ!Скачать Построение внутренней касательной к двум дугам окружностей.Урок12.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать Как при помощи только линейки построить касательную к окружности?Скачать Построение общей касательной к двум окружностямСкачать Касательная от точки к окружности (способ 1)Скачать |