Как правильно разметить отверстия по окружности

Как правильно разметить отверстия по окружности

При изготовлении металлоконструкций часто возникает потребность в делении окружностей на три, пять, восемь равных частей. Самый простой случай — разметка отверстий на фланцах.

На рисунке приведены примеры изделий, требующих предварительной разметки окружностей, деления их на равные части.

Как правильно разметить отверстия по окружности

Предлагаемая таблица Excel позволит максимально упростить процесс ручной разметки . В жёлтые ячейки таблицы вводим диаметр окружности и количество частей (от 2 до 100), на которое необходимо разделить окружность. Получаем длину хорды (развод ножек циркуля).

Пример. На фланце по окружности диаметром 890 мм необходимо найти центры n=25 отверстий под крепёжные болты.

1. От центра фланца разметочным циркулем (или резцом токарного станка) радиусом 445 мм (D окр./2) намечаем окружность.
2. Из таблицы для D=890 и n=25 получаем длину хорды, равную 111,54 мм.
3. На размеченной окружности делаем риску (центр первого отверстия) и от него разводом циркуля, равным длине хорды,
шагая по окружности, делаем последующие риски (размечаем центры остальных отверстий). На 24 шаге мы придём на первую риску.
4. Центры отверстий на фланце отмечены. Только после разметки проводим кернение, т.к. глубина лунки керна вносит погрешность в разметку.
Важное замечание. Длина окружности равна πD. Учитывая, что число π иррациональное, невозможно аналитическими методами
разделить окружность на N равных частей. Но для прикладных задач этот метод вполне приемлем.

Видео:Как разделить круг на равные частиСкачать

Как разделить круг на равные части

Разметка окружностей, центров и отверстий. Деление окружности на равные части и построение многоугольников

При разметке все построения производятся с помощью двух линий — прямой и окружности (на рис. 3.42 с целью повторения представлены элементы окружности).

Как правильно разметить отверстия по окружности

Рис. 3.42. Окружность и ее элементы

Нахождение центра окружности. На плоских деталях, где уже имеются готовые отверстия, центр которых неизвестен, его находят геометрическим способом. На торцах цилиндрических деталей нахождение центра производят при помощи циркуля, рейсмуса, угольника-цетроискателя и колокола.

Разметка центра по угольнику-центроискателю. Разметку выполняют в следующей последовательности.

  • 1. Деталь устанавливают на разметочную плиту так, чтобы размечаемый торец был сверху.
  • 2. На торец цилиндрической детали накладывают угольник-центроиска- тель так, чтобы две его стороны (планки) касались цилиндрической поверхности детали, рис. 3.43.

Как правильно разметить отверстия по окружности

Рис. 3.43. Нахождение центра окружности с помощью угольника-центроискателя

  • 3. Левой рукой плотно прижимают линейку угольника к поверхности торца, а правой проводят чертилкой первую диаметральную риску.
  • 4. Угольник-центроискатель поворачивают по цилиндрической поверхности детали примерно на 90° и проводят вторую риску. Точка пересечения двух рисок будет центром размечаемой окружности.

Разметку центра детали с грубо обработанной цилиндрической поверхностью производят в такой же последовательности. В этом случае для более точного нахождения центра окружности необходимо нанести пять-семь рисок. Центром будет точка, в которой пересекается наибольшее число рисок.

Точность разметки центра окружности проверяют разметочным циркулем, рис. 3.44. Острие одной ножки циркуля устанавливают в размеченный центр, а другую ножку перемещают так, чтобы ее острие слегка касалось цилиндрической части детали. Если острие ножки циркуля касается по всей длине окружности, то центр размечен правильно.

Как правильно разметить отверстия по окружности

Рис. 3.44. Способ проверки точности разметки центра окружности разметочным циркулем

Разметка центра рейсмусом (рис. 3.45). Деталь кладут на призмы или параллельные подкладки, уложенные на разметочную плиту. Устанавливают острый конец иглы рейсмуса несколько выше или ниже центра размечаемой

Как правильно разметить отверстия по окружности

Рис. 3.45. Разметка центра рейсмусом

детали и, придерживая деталь левой рукой, правой рукой движением рейсмуса по плите прочерчивают его иглой на торце детали короткую рису. После этого поворачивают деталь на 1/4 окружности и таким же способом проводят вторую риску. То же повторяют через каждую четверть оборота для проведения третьей и четвертой рисок. Внутри рисок (на пересечении диагоналей) и будет находиться центр. Его набивают кернером.

Геометрический способ нахождения центра заключается в следующем. Пусть дана плоская металлическая плита с готовым отверстием, центр которого неизвестен. Перед тем как начать разметку, вставляют в отверстие широкий деревянный брусок и на него набивают пластинку из белой жести или из оцинкованного кровельного железа.

Затем на краю отверстия слегка намечают произвольно три точки Л, В и С и из каждой пары этих точек ЛВ и ВС описывают по обе стороны их пересекающиеся между собой дуги-засечки 1—2 и 3—4, рис. 3.46. Через точки пересечения дуг проводят две прямые по направлению к центру до их пересечения в точке О. Точка пересечения этих прямых, и будет искомым центром отверстия.

Как правильно разметить отверстия по окружности

Рис. 3.46. Нахождение центра геометрическим способом

Разметка центра циркулем (кронциркулем). Зажав деталь в тиски, растворяют ножки циркуля на величину, немного большую или немного меньшую радиуса размечаемой детали. После этого, приложив к боковой поверхности детали одну ножку циркуля и придерживая ее большим пальцем, другой ножкой циркуля очерчивают дугу. Далее переместив циркуль на 1/4 окружности (на глаз), таким же образом очерчиваю вторую дугу. Затем через каждую четверть окружности очерчивают третью и четвертую дуги. Затем соединить противоположные засечки диагоналями, рис. 3.47я. Центр окружности будет находиться внутри очерченных дуг на пересечении диагоналей.

Как правильно разметить отверстия по окружности

Рис. 3.47. Разметка центра циркулем (кронциркулем)

Можно разметить центр и способом, показанным на рис. 3.476. Методика разметки аналогична разметке рейсмусом.

Разметка центра колоколом. Приспособление колокол устанавливается на торец цилиндрической детали. Придерживая колокол левой рукой в вертикальном положении, правой рукой наносят удар молотком по кернеру, находящемуся в колоколе, рис. 3.48. Кернер сделает углубление в центре торца.

Как правильно разметить отверстия по окружности

Рис. 3.48. Разметка центра колоколом

Деление окружности на равные части. При разметке окружностей часто приходится их делить на несколько равных частей — 3, 4, 5, 6, и больше. Ниже приведены примеры деления окружности на равные части геометрическим способом и с помощью таблиц.

Деление окружности на три равные части с построением вписанного треугольника (рис. 3.49).

Как правильно разметить отверстия по окружности

Рис. 3.49. Деление окружности на три части с построением вписанного треугольника

  • 1. В центре размечаемой плоскости с помощью циркуля проводим окружность требуемого радиуса, например R = 26 мм.
  • 2. Через центр окружности по линейке проводим прямую риску с пересечением окружности в точках А и В.
  • 3. Опорную ножку циркуля устанавливаем в точку А и при растворе циркуля, равном радиусу проведенной окружности, делаем на окружности две метки-засечки (точки С и D), где длина дуги между ними будет равна одной трети длины окружности.
  • 4. Соединив точки прямыми рисками СД СВ и BD, получим вписанный равносторонний треугольник.
  • 5. Правильность построения проверяем циркулем, устанавливая раствор циркуля равным одной из сторон треугольника и этим же размером определяя равенство остальных сторон треугольника.

Деление окружности на четыре равные части с построением вписанного квадрата, рис. 3.50.

Как правильно разметить отверстия по окружности

Рис. 3.50. Деление окружности на четыре части с построением вписанного квадрата (а) и прием разметки квадрата (6)

  • 1. В центре размечаемой плоскости циркулем проводим окружность требуемого радиуса, например R= 28 мм.
  • 2. Через центр окружности по линейке проводим прямую риску что бы она пересекала окружности в двух точках А и В и разделяла ее на две равные части.
  • 3. Опорную ножку циркуля устанавливаем в точку А и, раздвинув циркуль на расстояние несколько большее, чем половина отрезка АВ, проводим дугу в.
  • 4. Опорную ножку циркуля переносим в точку В и, не изменяя раствора циркуля, проводим дугу б так, чтобы она пересекла первую выполненную дугу в точках 7 и 2.
  • 5. Через точки 7 и 2 проводим риску, которая образует на окружности точки С и D.
  • 6. Соединив точки AD, DB, ВС и СА прямыми рисками, получим квадрат, вписанный в окружность.

Деление окружности на пять равных частей (рис. 3.51). На данной окружности проводим два взаимно перпендикулярных диаметра, пересекающие окружность в точках А и В, С и D. Радиус ОА делим пополам и из полученной точки Е описываем дугу радиусом ЕС до пересечения в точке F на радиусе О В. После этого соединяем прямой точки D и F. Откладывая длину прямой DF по окружности, разделим ее на пять равных частей.

Деление окружности на шесть равных частей с построением вписанного шестиугольника, рис. 3.52.

Как правильно разметить отверстия по окружности

Рис. 3.51. Деление окружности на пять равных частей

Как правильно разметить отверстия по окружности

Рис. 3.52. Деление окружности на шесть частей с построением вписанного шестиугольника

  • 1. В центре разметочной плоскости циркулем проводим окружность требуемого радиуса, например 7? = 27 мм.
  • 2. Через центр окружности по линейке проводим прямую риску с пересечением окружности в точках А и В.
  • 3. Из точки А, как из центра, наносим дугу радиусом, равным радиусу проведенной окружности, и получаем точки 7 и 2

Аналогичное построение делаем из точки В, нанося точки 3 и 4. Полученные точки пересечения и концевые точки диаметра будут искомыми точками деления окружности на шесть частей.

4. Соединив точки прямыми рисками А — 1,2 — 4, 4 — В, В — 3, 3 — 1 и 1 — А, получим вписанный шестиугольник.

При разметке граней шестиугольника под размер h зева гаечного ключа (рис. 3.53) радиус описываемой окружности определяется по формуле R = 0,577/г.

Как правильно разметить отверстия по окружности

Рис. 3.53. Пример разметки шестиугольника под размер зева гаечного ключа

Деление окружности на равные части с помощью таблицы. Эта таблица (табл. 3.5) имеет две графы: «Число делений окружности» и «Число, умножаемое на радиус окружности». Числа первой графы показывают, на сколько равных частей следует делить данную окружность. Во второй графе даны числа, на которые умножают радиус данной окружности. В результате умножения числа, взятого из второй графы, на радиус размечаемой окружности получаем величину хорды, т. е. расстояние по прямой между делениями окружности.

Таблица 3.5. Деление окружности на равные части

Видео:Деление окружности на 3; 6; 12 равных частейСкачать

Деление окружности на 3; 6; 12 равных частей

Деление окружности на любое число равных частей

Как разделить окружность на заданное количество одинаковых частей, терминология при построении окружности, деление окружности на 3, 4, 5, 6, 8, 10 частей.

Как правильно разметить отверстия по окружности

Термины при построениях окружности

Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.

Как правильно разметить отверстия по окружности

Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.

Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.

Части окружностей называются дугами.

Прямая СD, соединяющая две точки на окружности, называется хордой.

Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.

Часть круга, ограниченная хордой СD и дугой, называется сигментом.

Часть круга, ограниченная двумя радиусами и дугой, называется сектором.

Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.

Угол, образованный двумя радиусами КОА, называется центральным углом.

Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.

Видео:Деление окружностиСкачать

Деление окружности

Деление окружности на 4 и 8 одинаковых частей

Как правильно разметить отверстия по окружности

Проводим окружность с горизонтальной и вертикальной осями, которые делят её на 4-ре равные части. Проведённые с помощью циркуля или угольника под 45 0 , две взаимно перпендикулярные линии делят окружность на 8-мь равных частей.

Видео:Почему никто не знает об этой функции штангенциркуля?!Скачать

Почему никто не знает об этой функции штангенциркуля?!

Деление окружности на 3 и 6 равных частей (кратные 3 трём)

Как правильно разметить отверстия по окружности

Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.

Видео:УЦИ Урок №1 Разметка отверстий по окружностиСкачать

УЦИ  Урок №1 Разметка отверстий по окружности

Деление окружности на 5 и 10 равных частей

Как правильно разметить отверстия по окружности

Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки «а» в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке «b». Радиусом R3 из точки «1» проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние «b-О» даёт сторону правильного десятиугольника.

Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)

Как правильно разметить отверстия по окружности

Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки «1» окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.

Видео:Разметка отверстий на торцевой поверхности детали. Часть 1.Скачать

Разметка отверстий на торцевой поверхности детали. Часть 1.

Нахождение центра дуги окружности

Как правильно разметить отверстия по окружности

Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.

🌟 Видео

Как сделать точную разметку отверстий в плитке? Простой способСкачать

Как сделать точную разметку отверстий в плитке? Простой способ

Как найти центр круга в мастерской (4 способа)Скачать

Как найти центр круга в мастерской (4 способа)

Деление окружности на равные части. Урок 6. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Деление окружности на равные части. Урок 6. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Как разделить окружность на 6 частейСкачать

Как разделить окружность на 6 частей

1 2 2 деление окружности на 5 равных частейСкачать

1 2 2  деление окружности на 5 равных частей

Видеоуроки по КОМПАС 3D. Урок 1 Деление окружности на равные частиСкачать

Видеоуроки по КОМПАС 3D. Урок 1 Деление окружности на равные части

Точное сверление отверстийСкачать

Точное сверление отверстий

ЭТО ДОЛЖЕН УМЕТЬ КАЖДЫЙ! РАЗМЕТКА ФЛАНЦА./EVERYONE SHOULD BE ABLE TO DO THIS.HOW to drill holesСкачать

ЭТО ДОЛЖЕН УМЕТЬ КАЖДЫЙ! РАЗМЕТКА ФЛАНЦА./EVERYONE SHOULD BE ABLE TO DO THIS.HOW to drill holes

Деление окружности на 12 равных частейСкачать

Деление окружности на 12 равных частей

Самый быстрый способ размечать отверстияСкачать

Самый быстрый способ размечать отверстия

Деление окружности на 4 частиСкачать

Деление окружности на 4 части

Как разделить окружность на 8 частей How to divide a circle into 8 partsСкачать

Как разделить окружность на 8 частей How to divide a circle into 8 parts

Деление окружности на 3, 4, 5, 6 и 7 равных частейСкачать

Деление окружности на 3, 4, 5, 6 и 7 равных частей

Как сделать простую разметку планшайбы токарного станкаСкачать

Как сделать простую  разметку планшайбы токарного станка
Поделиться или сохранить к себе: