Вписанный треугольник опирающийся на диаметр

Углы, связанные с окружностью
Вписанный треугольник опирающийся на диаметрВписанные и центральные углы
Вписанный треугольник опирающийся на диаметрУглы, образованные хордами, касательными и секущими
Вписанный треугольник опирающийся на диаметрДоказательства теорем об углах, связанных с окружностью

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Вписанный треугольник опирающийся на диаметр

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Вписанный треугольник опирающийся на диаметр

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Теорема Фалеса об угле, опирающемся на диаметрСкачать

Теорема Фалеса об угле, опирающемся на диаметр

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголВписанный треугольник опирающийся на диаметр
Вписанный уголВписанный треугольник опирающийся на диаметрВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголВписанный треугольник опирающийся на диаметрВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголВписанный треугольник опирающийся на диаметрДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголВписанный треугольник опирающийся на диаметрВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаВписанный треугольник опирающийся на диаметр

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вписанный треугольник опирающийся на диаметр

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вписанный треугольник опирающийся на диаметр

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Вписанный треугольник опирающийся на диаметр

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вписанный треугольник опирающийся на диаметр

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Вписанный треугольник опирающийся на диаметр

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Вписанный треугольник опирающийся на диаметр

Видео:Вписанный угол, опирающийся на диаметр (полуокружность). Геометрия 8-9 классСкачать

Вписанный угол, опирающийся на диаметр (полуокружность). Геометрия 8-9 класс

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиВписанный треугольник опирающийся на диаметрВписанный треугольник опирающийся на диаметр
Угол, образованный секущими, которые пересекаются вне кругаВписанный треугольник опирающийся на диаметрВписанный треугольник опирающийся на диаметр
Угол, образованный касательной и хордой, проходящей через точку касанияВписанный треугольник опирающийся на диаметрВписанный треугольник опирающийся на диаметр
Угол, образованный касательной и секущейВписанный треугольник опирающийся на диаметрВписанный треугольник опирающийся на диаметр
Угол, образованный двумя касательными к окружностиВписанный треугольник опирающийся на диаметрВписанный треугольник опирающийся на диаметр

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Угол, образованный пересекающимися хордами хордами
Вписанный треугольник опирающийся на диаметр
Формула: Вписанный треугольник опирающийся на диаметр
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Вписанный треугольник опирающийся на диаметр

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Вписанный треугольник опирающийся на диаметр
Формула: Вписанный треугольник опирающийся на диаметр
Угол, образованный касательной и секущей касательной и секущей
Формула: Вписанный треугольник опирающийся на диаметр

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Вписанный треугольник опирающийся на диаметр

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Свойство вписанного угла, опирающегося на диаметрСкачать

Свойство вписанного угла, опирающегося на диаметр

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Вписанный треугольник опирающийся на диаметр

В этом случае справедливы равенства

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Вписанный треугольник опирающийся на диаметр

В этом случае справедливы равенства

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Вписанный треугольник опирающийся на диаметр

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Вписанный угол, опирающийся на диаметр окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Вписанный угол, опирающийся на диаметр окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Вписанный угол, опирающийся на диаметр

Вписанный угол, опирающийся на диаметр, обладает полезным свойством, вытекающим из теоремы о вписанном угле.

Свойство вписанного угла, опирающегося на диаметр

(следствие из теоремы о вписанном угле)

Вписанный угол, опирающийся на диаметр, прямой.

Вписанный треугольник опирающийся на диаметрДано:

Так как AC- диаметр, то ∠AOC=180º.

∠AOC — центральный, ∠ABC — соответствующий ему вписанный угол.

Вписанный треугольник опирающийся на диаметрСледовательно, по теореме о вписанном угле,

Вписанный треугольник опирающийся на диаметр

Вписанный треугольник опирающийся на диаметр

Что и требовалось доказать.

Из этого следует, например, что если центр описанной окружности лежит на стороне треугольника, то угол напротив этой стороны — прямой.

Если центр описанной окружности лежит на диагонали четырехугольника, то угол напротив этой диагонали — прямой.

Другой вариант формулировки следствия:

Диаметр виден из любой точки окружности под углом 90º.

Если вписанный угол связать с дугой, то следствие из теоремы о вписанном угле звучит так:

Вписанный треугольник опирающийся на диаметр

Вписанный угол, опирающийся на полуокружность — прямой.

Видео:Вписанный угол, опирающийся на диаметр. Вписанные углы, опирающиеся на одну и ту же дугуСкачать

Вписанный угол, опирающийся на диаметр. Вписанные углы, опирающиеся на одну и ту же дугу

Центральные и вписанные углы

Вписанный треугольник опирающийся на диаметр

О чем эта статья:

Видео:Вписанный угол, который опирается на диаметрСкачать

Вписанный угол, который опирается на диаметр

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Вписанный треугольник опирающийся на диаметр

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Вписанный треугольник опирающийся на диаметр

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:23 Угол, опирающийся на диаметрСкачать

23 Угол, опирающийся на диаметр

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Вписанный треугольник опирающийся на диаметр

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Вписанный треугольник опирающийся на диаметр

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Вписанный треугольник опирающийся на диаметр

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Вписанный треугольник опирающийся на диаметр

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Вписанный треугольник опирающийся на диаметр

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Вписанный треугольник опирающийся на диаметр

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Вписанный треугольник опирающийся на диаметр

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Вписанный треугольник опирающийся на диаметр

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Вписанный треугольник опирающийся на диаметр

ㄥBAC + ㄥBDC = 180°

Видео:Угол, опирающийся на диаметр окружности, прямой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Угол, опирающийся на диаметр окружности, прямой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Вписанный треугольник опирающийся на диаметр

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Вписанный треугольник опирающийся на диаметр

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Вписанный треугольник опирающийся на диаметр

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

🌟 Видео

Вписанный угол, опирающийся на хорду, равную радиусу окружностиСкачать

Вписанный угол, опирающийся на хорду, равную радиусу окружности

Вписанный угол опирающийся на полуокружность пряомой док-во за 10 секундСкачать

Вписанный угол опирающийся на полуокружность пряомой док-во за 10 секунд

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Вписанный угол, опирающийся на хорду, равную r окрСкачать

Вписанный угол, опирающийся на хорду, равную r окр

ОГЭ Задание 25 Вписанный угол опирается на диаметрСкачать

ОГЭ Задание 25 Вписанный угол опирается на диаметр

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.
Поделиться или сохранить к себе: