Чему равен диаметр окружности описанной около треугольника

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Чему равен диаметр окружности описанной около треугольникаСерединный перпендикуляр к отрезку
Чему равен диаметр окружности описанной около треугольникаОкружность описанная около треугольника
Чему равен диаметр окружности описанной около треугольникаСвойства описанной около треугольника окружности. Теорема синусов
Чему равен диаметр окружности описанной около треугольникаДоказательства теорем о свойствах описанной около треугольника окружности

Чему равен диаметр окружности описанной около треугольника

Видео:Как найти диаметр окружности, описанной около равнобедренного треугольникаСкачать

Как найти диаметр окружности, описанной около равнобедренного треугольника

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Чему равен диаметр окружности описанной около треугольника

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Чему равен диаметр окружности описанной около треугольника

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Чему равен диаметр окружности описанной около треугольника

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Чему равен диаметр окружности описанной около треугольника

Чему равен диаметр окружности описанной около треугольника

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Чему равен диаметр окружности описанной около треугольника

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Чему равен диаметр окружности описанной около треугольника

Чему равен диаметр окружности описанной около треугольника

Полученное противоречие и завершает доказательство теоремы 2

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Чему равен диаметр окружности описанной около треугольника

Видео:Нахождение диаметра описанной окружностиСкачать

Нахождение диаметра описанной окружности

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Чему равен диаметр окружности описанной около треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Чему равен диаметр окружности описанной около треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Чему равен диаметр окружности описанной около треугольникаВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаЧему равен диаметр окружности описанной около треугольникаОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиЧему равен диаметр окружности описанной около треугольникаЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиЧему равен диаметр окружности описанной около треугольникаЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовЧему равен диаметр окружности описанной около треугольника
Площадь треугольникаЧему равен диаметр окружности описанной около треугольника
Радиус описанной окружностиЧему равен диаметр окружности описанной около треугольника
Серединные перпендикуляры к сторонам треугольника
Чему равен диаметр окружности описанной около треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаЧему равен диаметр окружности описанной около треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиЧему равен диаметр окружности описанной около треугольника

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиЧему равен диаметр окружности описанной около треугольника

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиЧему равен диаметр окружности описанной около треугольника

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовЧему равен диаметр окружности описанной около треугольника

Для любого треугольника справедливы равенства (теорема синусов):

Чему равен диаметр окружности описанной около треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаЧему равен диаметр окружности описанной около треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиЧему равен диаметр окружности описанной около треугольника

Для любого треугольника справедливо равенство:

Чему равен диаметр окружности описанной около треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Чему равен диаметр окружности описанной около треугольника

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Чему равен диаметр окружности описанной около треугольника

Чему равен диаметр окружности описанной около треугольника.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Чему равен диаметр окружности описанной около треугольника

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

Задача 6 №27900 ЕГЭ по математике. Урок 128

Окружность, описанная около треугольника

Видео:Геометрия Найдите диаметр окружности, описанной около прямоугольного треугольника, если один из егоСкачать

Геометрия Найдите диаметр окружности, описанной около прямоугольного треугольника, если один из его

Определение окружности, описанной около треугольника

Определение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1).

Чему равен диаметр окружности описанной около треугольника

При этом треугольник называется треугольником вписанным в окружность .

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Теорема об окружности, описанной около треугольника

Теорема 1. Около любого треугольника можно описать окружность.

Чему равен диаметр окружности описанной около треугольника

Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC.Чему равен диаметр окружности описанной около треугольника

Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника.

Замечание 1. Около любого треугольника можно описать только одну окружность.

Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают.Чему равен диаметр окружности описанной около треугольника

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Теорема синусов

Чему равен диаметр окружности описанной около треугольника

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Чему равен диаметр окружности описанной около треугольника

Формула теоремы синусов:

Чему равен диаметр окружности описанной около треугольника

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Чему равен диаметр окружности описанной около треугольника

Из этой формулы мы получаем два соотношения:


    Чему равен диаметр окружности описанной около треугольника

Чему равен диаметр окружности описанной около треугольника
На b сокращаем, синусы переносим в знаменатели:
Чему равен диаметр окружности описанной около треугольника

  • Чему равен диаметр окружности описанной около треугольника
    bc sinα = ca sinβ
    Чему равен диаметр окружности описанной около треугольника
  • Из этих двух соотношений получаем:

    Чему равен диаметр окружности описанной около треугольника

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Чему равен диаметр окружности описанной около треугольника

    Чему равен диаметр окружности описанной около треугольника

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Чему равен диаметр окружности описанной около треугольника

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Чему равен диаметр окружности описанной около треугольника

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Чему равен диаметр окружности описанной около треугольника

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Чему равен диаметр окружности описанной около треугольника

    Вспомним свойство вписанного в окружность четырёхугольника:

    Чему равен диаметр окружности описанной около треугольника

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Чему равен диаметр окружности описанной около треугольника

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Чему равен диаметр окружности описанной около треугольника

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:№694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенузаСкачать

    №694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенуза

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Чему равен диаметр окружности описанной около треугольника

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Чему равен диаметр окружности описанной около треугольника

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Чему равен диаметр окружности описанной около треугольника

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Чему равен диаметр окружности описанной около треугольника

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Чему равен диаметр окружности описанной около треугольника

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Чему равен диаметр окружности описанной около треугольника

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Чему равен диаметр окружности описанной около треугольника

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Задание 24 ОГЭ по математике #7Скачать

    Задание 24 ОГЭ по математике #7

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Чему равен диаметр окружности описанной около треугольника
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Чему равен диаметр окружности описанной около треугольника

    Чему равен диаметр окружности описанной около треугольника

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Геометрия Радиус окружности описанной около треугольника ABC равен 6 см Найдите радиус окружностиСкачать

    Геометрия Радиус окружности описанной около треугольника ABC равен 6 см Найдите радиус окружности

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Чему равен диаметр окружности описанной около треугольника

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    🎦 Видео

    Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

    2038 центр окружности описанной около треугольника ABC лежит на стороне AB

    Окружность, диаметр, хорда геометрия 7 классСкачать

    Окружность, диаметр, хорда геометрия 7 класс

    ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

    ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

    2053 радиус окружности описанной около правильного треугольника равен 56Скачать

    2053 радиус окружности описанной около правильного треугольника равен 56

    Геометрия. ОГЭ по математике. Задание 16Скачать

    Геометрия. ОГЭ по математике. Задание 16

    Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу.Скачать

    Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу.
    Поделиться или сохранить к себе: