Для изображения в пространстве прямых, что параллельны друг другу, с использованием разнообразных инструментов опираются на свойства их параллельности.
- Изображение параллельных прямых с применением угольника и линейки
- Изображение параллельных прямых с использованием циркуля и линейки
- Изображение параллельной прямой, отдаленной на определенное расстояние от имеющейся
- Прочие способы изображения параллельных прямых
- Не нашли нужную информацию?
- Гарантия возврата денег
- Отзывы студентов о нашей работе
- Построение параллельных прямых
- Построение параллельных прямых с помощью циркуля и линейки
- Готовые работы на аналогичную тему
- Построение параллельных прямых с помощью угольника и линейки
- Построение параллельной прямой, отстоящей на заданное расстояние от данной прямой
- Другие способы построения параллельных прямых
- Построение с помощью циркуля и линейки — описание, алгоритмы и задачи
- Построение отрезка, равного данному
- Деление отрезка пополам
- Построение угла, равного данному
- Построение перпендикулярных прямых
- Пример 1
- Пример 2
- Построение параллельных (непересекающихся) прямых
- Построение правильного треугольника, вписанного в окружность
- Построение правильного четырехугольника вписанного в окружность
- Вариант 1
- Вариант 2
- Построение вписанного в окружность правильного пятиугольника
- Построение правильного шестиугольника, вписанного в окружность
Видео:№194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертежногоСкачать
Изображение параллельных прямых с применением угольника и линейки
Используем принцип изображения параллельной прямой, что пересекает заданную точку, с использованием чертежного угольника и линейки. Рассмотрим порядок действий при этом способе построения. Допустим, изображены прямая a и точка (M) , не лежащая на ней:
- Диагональ угольника совмещаем с прямой a, а вдоль его большого катета фиксируем линейку;
- Перемещаем угольник вдоль линейки до того момента, пока диагональ не сравняется с точкой (M) ;
- Чертим через точку (M) вдоль диагонали угольника прямую (b) . Она и будет параллельна существующей прямой (a) .
- Параллельность этих прямых подтверждается также равностью углов (∝) и (β) .
Видео:Параллельные прямые циркулемСкачать
Изображение параллельных прямых с использованием циркуля и линейки
Также широко применяется способ изображения параллельных прямых с применением линейки и циркуля.
Допустим есть прямая и точка (A) , не лежащая на ней. Необходимо изобразить прямую, параллельную существующей прямой и пересекающую заданную точку (A) .
Часто требуется просто изобразить параллельные прямые без начальных условий. В подобном варианте просто нужно самостоятельно изобразить прямую и поставить точку, не лежащую на этой прямой.
Не нашли что искали?
Просто напиши и мы поможем
Итак, порядок изображения параллельной прямой:
- Выбираем случайную точку на существующей прямой, дадим ей название, например (B) . Выбираем совершенно любую точку, это не повлияет на результат;
- С помощью циркуля чертим круг с центром в точке (B) и радиусом (AB) ;
- Ккруг проходит через прямую в точке, которую назовем (C) ;
- Начертим еще один круг радиусом (AB) , но уже с центром в точке (C) . Стоит заметить, что этот круг должен в любом случае пересечь точку (B) , если все выполнено верно;
- Этим же радиусом чертим круг с центром в точке (A) ;
- Этот круг пересечет предыдущий в точке, которую назовем (D) . Также стоит учесть, что и этот круг при верном построении пересечет точку (B) ;
- На данном этапе через точки (A) и (D) проводим с использованием линейки прямую, она будет параллельна существующей прямой.
В итоге мы имеем две прямые (BC) и (AD) , параллельные между собой.
Видео:6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать
Изображение параллельной прямой, отдаленной на определенное расстояние от имеющейся
Для изображения параллельной прямой, относительно имеющейся, на определенном конкретном расстоянии можно использовать угольник и линейку. (К) примеру, изображена прямая (MN) и задано некое расстояние (a) :
- Отмечаем на существующей прямой (MN) случайную точку, например назовем ее (B) ;
- Теперь необходимо изобразить прямую через точку (B) , перпендикулярную изображенной прямой. Назовем ее (AB) ;
- Откладываем на построенной прямой отрезок (BC) , который равен (a) ;
- С использованием линейки и угольника, как описано выше, проведем через точку (C) прямую (CD) , она будет параллельной к прямой (MN) .
Возможно также на прямой (AB) отмерить расстояние (a) от точки (B) в противоположную сторону, проделать все вышеописанное и начертить еще одну прямую параллельно существующей прямой (MN) .
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Видео:№196. Дан треугольник ABC. Сколько прямых, параллельных стороне АВ, можно провестиСкачать
Прочие способы изображения параллельных прямых
В чертежной сфере часто применяют способ изображения с использованием рейсшины. Столяры при изготовлении изделий часто используют так называемый инструмент – малку, состоящую из двух планок на шарнирах. Этим инструментом наносят разметку с использованием принципов параллельных прямых.
Не нашли нужную информацию?
Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматически разошлет в течение 59 секунд. Выберите подходящего эксперта, и он избавит вас от хлопот с учёбой.
Гарантия низких цен
Все работы выполняются без посредников, поэтому цены вас приятно удивят.
Доработки и консультации включены в стоимость
В рамках задания они бесплатны и выполняются в оговоренные сроки.
Вернем деньги за невыполненное задание
Если эксперт не справился – гарантируем 100% возврат средств.
Тех.поддержка 7 дней в неделю
Наши менеджеры работают в выходные и праздники, чтобы оперативно отвечать на ваши вопросы.
Тысячи проверенных экспертов
Мы отбираем только надёжных исполнителей – профессионалов в своей области. Все они имеют высшее образование с оценками в дипломе «хорошо» и «отлично».
Гарантия возврата денег
Эксперт получил деньги, а работу не выполнил?
Только не у нас!
Деньги хранятся на вашем балансе во время работы над заданием и гарантийного срока
Гарантия возврата денег
В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы
Видео:Построение прямой, параллельной даннойСкачать
Отзывы студентов о нашей работе
«Всё сдал!» — безопасный онлайн-сервис с проверенными экспертами
Используя «Всё сдал!», вы принимаете пользовательское соглашение
и политику обработки персональных данных
Сайт работает по московскому времени:
Принимаем к оплате
Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
Построение параллельных прямых
Вы будете перенаправлены на Автор24
В основе способов построения параллельных прямых с помощью различных инструментов лежат признаки параллельности прямых.
Видео:Построение прямой, параллельной даннойСкачать
Построение параллельных прямых с помощью циркуля и линейки
Рассмотрим принцип построения параллельной прямой, проходящей через заданную точку, с помощью циркуля и линейки.
Пусть дана прямая и некоторая точка А, которая не принадлежит данной прямой.
Необходимо построить прямую, проходящую через заданную точку $А$ параллельно данной прямой.
На практике зачастую требуется построить две или более параллельных прямых без данной прямой и точки. В таком случае необходимо начертить прямую произвольно и отметить любую точку, которая не будет лежать на данной прямой.
Рассмотрим этапы построения параллельной прямой:
- Выберем произвольную точку на данной прямой и назовем ее $В$. обратим внимание, что выбор точки абсолютно произвольный, т.к. не влияет на результат построения.
- С помощью циркуля и начертим окружность радиуса $АВ$ с центром в точке $В$.
На пересечении окружности и прямой отметим точку и назовем ее $С$.
С тем же радиусом $АВ$ построим окружность с центром в точке $С$. Обратим внимание, что вторая построенная окружность обязательно должна пройти через точку В при правильном выполнении построения.
С прежним радиусом $АВ$ построим третью окружность с центром в точке $А$.
Отметим точку пересечения второй и третьей построенных окружностей и назовем ее $D$. Отметим, что третья окружность при правильном построении также должна пройти через точку $В$.
Через точки $А$ и $D$ проведем прямую, которая будет параллельной заданной.
Таким образом, получили параллельные прямые $ВС$ и $АD$:
$BC parallel AD$, т. $A in AD$.
На практике также применяют метод построения параллельных прямых с помощью чертежного угольника и линейки.
Готовые работы на аналогичную тему
Видео:КАК ПОСТРОИТЬ ПРЯМУЮ ПАРАЛЛЕЛЬНУЮ ДАННОЙ ПРЯМОЙ? Примеры | МАТЕМАТИКА 6 классСкачать
Построение параллельных прямых с помощью угольника и линейки
Для построения прямой, которая будет проходить через точку М параллельно данной прямой а, необходимо:
- Угольник приложить к прямой $а$ диагональю (смотрите рисунок), а к его большему катету приложить линейку.
- Передвинуть угольник по линейке до тех пор, пока данная точка $М$ не окажется на диагонали угольника.
- Провести через точку $М$ искомую прямую $b$.
Мы получили прямую, проходящую через заданную точку $М$, параллельную данной прямой $а$:
$a parallel b$, т. $M in b$.
Параллельность прямых $а$ и $b$ видна из равности соответственных углов, которые отмечены на рисунке буквами $alpha$ и $beta$.
Видео:Построение параллельной плоскости на расстояние 30 мм.Скачать
Построение параллельной прямой, отстоящей на заданное расстояние от данной прямой
В случае необходимости построения прямой, параллельной заданной прямой и отстоящей от нее на заданном расстоянии можно воспользоваться линейкой и угольником.
Пусть дана прямая $MN$ и расстояние $а$.
- Отметим на заданной прямой $MN$ произвольную точку и назовем ее $В$.
- Через точку $В$ проведем прямую, перпендикулярную к прямой $MN$, и назовем ее $АВ$.
- На прямой $АВ$ от точки $В$ отложим отрезок $ВС=а$.
- С помощью угольника и линейки проведем прямую $CD$ через точку $С$, которая и будет параллельной заданной прямой $АВ$.
Если отложить на прямой $АВ$ от точки $В$ отрезок $ВС=а$ в другую сторону, то получим еще одну параллельную прямую к заданной, отстоящую от нее на заданное расстояние $а$.
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Другие способы построения параллельных прямых
Еще одним способом построения параллельных прямых является построение с помощью рейсшины. Чаще всего данный способ используют в чертежной практике.
При выполнении столярных работ для разметки и построения параллельных прямых, используется специальный чертежный инструмент – малка – две деревянные планки, которые скрепляются шарниром.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 22 07 2021
Видео:№195. Начертите треугольник ABC и отметьте точку D на стороне АС. Через точку D с помощьюСкачать
Построение с помощью циркуля и линейки — описание, алгоритмы и задачи
Построение с помощью циркуля и линейки – древнейший способ расчета в евклидовой геометрии. Известен со времен Древней Греции. Данная тема изучается в средних и старших классах на уроках геометрии.
Рассмотрим все случаи построения на конкретных примерах.
Видео:Строим треугольник по трем сторонам (Задача 5).Скачать
Построение отрезка, равного данному
Есть отрезок СD. Задача — начертить равнозначный данному отрезок той же величины.
Строится луч, имеющий начало в т. A. Циркуль отмеряет существующий отрезок CD. Циркулем откладывается отрезок, равнозначный первому отрезку, на том же начерченном луче от его начала (A).
Для подобного чертежа ножку с иглой закрепляют в начале луча A, а с помощью части с грифелем проводится дуга до места соприкосновения с лучом. Данную точку можно обозначить т. B.
Отрезок AB будет равнозначен отрезку СD. Задача решена.
Видео:Уравнения стороны треугольника и медианыСкачать
Деление отрезка пополам
Имеется отрезок AB.
Сначала следует нарисовать окружность с радиусом больше половины отрезка AB с центром в т. A.
Далее чертится круг с тем же радиусом с серединой в т. B. В местах пересечения окружностей имеем т. C и т. D.
Сквозь эти точки требуется провести прямую линию. Получаем т. E, которая будет серединой отрезка AB.
Видео:Параллельность прямой к плоскостиСкачать
Построение угла, равного данному
Имеется угол ABC.
Вблизи угла проводится луч ED. Далее чертится окружность с серединой в т. B. В итоге имеем точки M и N.
Оставив раствор циркуля прежним, рисуют круг с серединой в т. E. В точке соприкосновения имеем т. K.
Поменяв раствор циркуля на длину расстояния между т. M и т. N, нужно провести окружность с серединой в т. K. В итоге получается т. F. После чертится прямая из т. E через т. F. Образуется угол DEF, который будет равнозначен углу ABC. Задача решена.
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Построение перпендикулярных прямых
Пример 1
Точка O находится на прямой a.
Есть прямая и точка, находящаяся на ней. Нанести линию, идущую через существующую точку и находящуюся под прямым углом к имеющейся прямой.
Шаг 1. Чертим круг с рандомным радиусом r с серединой в т. O. Окружность соприкасается с прямой в т. A и т. B.
Шаг 2. Из имеющихся точек строится круг с радиусом AB. Точки С и D являются точками соприкосновения окружностей.
Приложив линейку, чертят прямую, сквозь т. O и одну из т. C или т. D, к примеру отрезок OC.
Доказательство, что прямая OC лежит перпендикулярно a.
Намечаются два отрезка — AC и CB. Получившиеся треугольники будут равны, согласно третьему признаку равенства треугольников. Значит, прямая CO перпендикулярна AB.
Пример 2
Точка O находится вне прямой а.
Нарисовать окружность с радиусом r из т. O. Она должна проходить сквозь прямую a. A и B — точки её соприкосновения с прямой.
Оставив прежний радиус, рисуем окружности с серединой в т. A и т. B. Точка O1 — место их соприкосновения.
Рисуем линию, соединяющая т. O и т. O1.
Доказательство выглядит следующим образом.
Две прямые ОО1 и AB пересекаются в т. C. Согласно третьему признаку равенства всех треугольников AOB = BO1A. Из данного вывода следует, что угол OAC = O1AC. Одноименные треугольники также будут равны (согласно первому признаку равенства всех треугольников).
Исходя из этого, выводим, что угол OCA = O1CA, а, учитывая смежность углов, приходим к пониманию, что они прямые. А это означает, что OC – перпендикулярный отрезок, опущенный из т. O на прямую a. Задача решена.
Видео:Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать
Построение параллельных (непересекающихся) прямых
Имеется прямая и т. А, не лежащая на этой прямой.
Нужно отметить прямую, проходящую через т. A, и параллельную имеющейся прямой.
Берется рандомная точка на имеющейся прямой и именуется B. С помощью циркуля строится окружность радиуса AB с серединой в т. B. В месте пересечения окружности и данной прямой отмечается т. C.
Оставив прежний радиус, рисуется еще одна окружность, теперь уже с центром в т. C. При правильных расчетах дуга должна пройти через т. B.
C тем же радиусом AB строится окружность с серединой в т. A. Точку соприкосновения второй и третьей окружностей назовем D. Третья окружность, учитывая верность расчетов, также пройдет через т. B.
Проводится прямая через т. A и т. D, которая станет параллельной первой. В итоге, получились две параллельные прямые, BC и AD.
Видео:Строим треугольник по стороне и двум углам (Задача 7).Скачать
Построение правильного треугольника, вписанного в окружность
Правила построения правильного треугольника, вписанного в окружность:
Отметить отрезок AB, чья длина будет равняться а.
Взять циркуль. Часть с иголкой расположить на т. А, а часть с карандашом на т. B. Прочертить окружность. В итоге, радиус круга будет равнозначен длине отрезка AB.
Далее иглу размещают на т. B, а часть с грифелем на т. A. Чертится круг. В итоге, его радиус будет равнозначен длине отрезка AB.
На чертеже окружности пересеклись в двух точках. Далее нужно соединить т. A и т. B и одну из вышеупомянутых точек. В результате получится равносторонний треугольник.
Стороны такого треугольника равнозначны радиусам двух окружностей, которые равны длине а. Задача решена.
Видео:Параллельные прямые (задачи).Скачать
Построение правильного четырехугольника вписанного в окружность
Вариант 1
Исходя из данности, что диагонали любого квадрата пересекаются в середине окружности и находятся по отношению к его осям под углом 45 градусов, производят следующие действия. Пользуясь линейкой и уголком с углами 45 градусов (см. рисунок), размечают вершины т. 1 и т. 3.
Сквозь данные точки чертят отрезки, стороны четырехугольника, расположенные по горизонтали. Это т. 4 и т. 1, т. 3 и т. 2. В конце линейкой и уголком по его катету проводятся линии, расположенные по вертикали (высоты), отрезок т.1 — т. 2 и отрезок т. 4 — т. 3.
Вариант 2
Так как вершины правильного четырехугольника разделяют наполовину дуги окружностей, между точками диаметра (см. рисунок), то для достижения результата делают следующее: отмечают на точках перпендикулярных диаметров т. A, т. B и т. C и рисуют дуги до их соприкосновения.
После чертят прямые через места соприкосновения дуг, которые выделены на фигуре линиями. Точки соприкосновения с окружностью будут являться вершинами — это т. 1 и т. 3, т. 4 и т. 2. Данные вершины полученного квадрата соединяют друг с другом.
Задача выполнена двумя способами.
Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Построение вписанного в окружность правильного пятиугольника
Поместить на окружность т. 1, считая ее за вершину пятиугольника. Разделить отрезок AO пополам. Чтобы произвести подобную операцию, из т. A чертят дугу до места соприкосновения с окружностью в т. M и т. B.
Расположив конкретные точки на прямой, получаем т. K, и после совмещаем с т. 1. Радиусом, длина которого – отрезок А1, сделать изгиб из т. K до места соприкосновения с линией АО в т. H. После совместить т. 1 и т. H, образуя одну из пяти сторон пятиугольника.
Взять циркуль, величина раствора которого будет равна отрезку т.1 — т. H, нарисовать изгиб из т. 1 до соприкосновения с кругом. Так находят вершины 2 и 5. Отметив точки на вершинах 2 и 5, получают вершины 3 и 4. В конце все точки совмещают друг с другом.
Построение правильного шестиугольника, вписанного в окружность
Решение подобной задачи строится на свойствах, где сторона шестиугольника равнозначна радиусу круга.
Для расчета разделяют круг на шесть ровных частей и последовательно совмещают все полученные точки (см. рисунок). Задача решена.