Как построить перпендикулярные прямые и параллельные прямые

Построение перпендикулярных прямых

Примеры:

1. Даны прямая и точка на ней. Построить прямую проходящую через данную точку и перпендикулярную к данной прямой.

Дано: прямая m, MКак построить перпендикулярные прямые и параллельные прямыеm.

Построить: МPКак построить перпендикулярные прямые и параллельные прямыеm.

Решение:

Произвольно строим с помощью линейки прямую m и отмечаем на ней точку М.

Как построить перпендикулярные прямые и параллельные прямые

На лучах прямой m, исходящих из точки М, с помощью циркуля откладываем равные отрезки МА и МВ (МА = МВ). Для этого строим окружность с центром в точке М, при этом всю окружность строить не обязательно, достаточно сделать пометки по разные стороны от точки М (смотри выделенное красным).

Как построить перпендикулярные прямые и параллельные прямые

Затем строим две окружности с центрами в точках А и В радиуса АВ (полностью окружности строить необязательно, смотри выделенное фиолетовым и красным цветом).

Как построить перпендикулярные прямые и параллельные прямые

Данные окружности пересекаются в двух точках, обозначим их Р и Q. Проведем с помощью линейки через точку М и одну из точек Р или Q прямую, например, МР.

Как построить перпендикулярные прямые и параллельные прямые

Докажем, что прямая МР — искомая прямая, т.е. что МPКак построить перпендикулярные прямые и параллельные прямыеm.

Рассмотрим треугольник АРВ.

Как построить перпендикулярные прямые и параллельные прямые

АР = ВР, т.к. по построению это радиусы одинаковых окружностей, следовательно, Как построить перпендикулярные прямые и параллельные прямыеАРВ — равнобедренный. По построению МА = МВ, т.е. МР — медиана равнобедренного треугольника, тогда по свойству равнобедренного треугольника МР и высота, т.е. МPКак построить перпендикулярные прямые и параллельные прямыеm. Что и требовалось доказать.

2. Даны прямая и точка не лежащая на этой прямой. Построить прямую проходящую через данную точку и перпендикулярную к данной прямой.

Дано: прямая m, MКак построить перпендикулярные прямые и параллельные прямыеm.

Построить: МNКак построить перпендикулярные прямые и параллельные прямыеm.

Решение:

Произвольно строим с помощью линейки прямую m и отмечаем точку М, не лежащую на прямой m.

Как построить перпендикулярные прямые и параллельные прямые

Далее строим окружность с центром в данной точке М, пересекающую прямую m в двух точках, которые обозначим буквами А и В (всю окружность строить необязательно, смотри выделенное красным цветом).

Как построить перпендикулярные прямые и параллельные прямые

Затем построим две окружности с центрами в точках А и В, проходящие через точку М (полностью окружности строить необязательно, смотри выделенное синим и зеленым цветом). Эти окружности пересекутся в точке М и еще в одной точке, которую обозначим буквой N. Проведем прямую МN.

Как построить перпендикулярные прямые и параллельные прямые

Докажем что, прямая МN — искомая, т.е. МNКак построить перпендикулярные прямые и параллельные прямыеm.

Как построить перпендикулярные прямые и параллельные прямые

В Как построить перпендикулярные прямые и параллельные прямыеАМN и Как построить перпендикулярные прямые и параллельные прямыеВМN: АМ = АN = ВМ = ВN — радиусы, МN — общая, следовательно, Как построить перпендикулярные прямые и параллельные прямыеАМN =Как построить перпендикулярные прямые и параллельные прямыеВМN (по трем сторонам), значит, углы ВМС и АМС равны (С точка пересечения прямых m и МN). Отсюда следует, что отрезок МС — биссектриса равнобедренного треугольника АМВ (АМ = ВМ — радиусы) с основанием АВ, тогда по свойству равнобедренного треугольника АМ — высота, значит, МNКак построить перпендикулярные прямые и параллельные прямыеАВ, т.е. МNКак построить перпендикулярные прямые и параллельные прямыеm.

Поделись с друзьями в социальных сетях:

Видео:Перпендикулярные прямыеСкачать

Перпендикулярные прямые

Прямая. Параллельные и перпендикулярные прямые.

теория по математике 📈 планиметрия

Линия, которую изображают на плоскости при помощи линейки, причем, эта линия не должна быть ограничена точкой ни с одной стороны, называют прямой. Другими словами, прямая не имеет ни начала, ни конца.

Обозначения прямой

Обычно прямые обозначают прописной латинской буквой или двумя заглавными (если на прямой лежат точки). Рассмотрим это на рисунке. Данную прямую мы можем назвать двумя способами: прямая а; прямая АС.

Как построить перпендикулярные прямые и параллельные прямые

Рассмотрим теперь две прямые на плоскости. Для них существует два случая расположения: пересекаются и не пересекаются.

Если две прямые пересекаются, то есть имеют общую точку, то их называют пересекающимися. На рисунке показаны прямые а и b, которые пересекаются в точке A. Запись с помощью символов для данного рисунка выполняют следующим образом: а ∩ b=А, где ∩ — это знак «пересечение».

Как построить перпендикулярные прямые и параллельные прямые

Если две прямые на плоскости не пересекаются, то их называют параллельными прямыми. На рисунке изображены параллельные прямые. Запись осуществляется следующим образом: a | | b, где | | — знак параллельности.

Как построить перпендикулярные прямые и параллельные прямые

Признаки параллельности прямых

Рассмотрим прямую с, которая пересекает две прямые а и b и образует с ними восемь углов. Такую прямую с называют — секущая. Пары углов, которые образует секущая, также имеют названия. Итак, на данном рисунке изображены эти все прямые и восемь углов.

Как построить перпендикулярные прямые и параллельные прямыеНеобходимо запомнить названия следующих углов:

  1. накрест лежащие углы: 4 и 5; 3 и 6;
  2. односторонние углы: 4 и 6; 3 и 5;
  3. соответственные углы: 1 и 5; 3 и 7; 2 и 6; 4 и 8.

С данными углами связаны следующие признаки параллельности прямых:

  1. если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны;
  2. если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны;
  3. если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180 0 , то прямые параллельны.

Видео:Перпендикулярные прямые. 6 класс.Скачать

Перпендикулярные прямые. 6 класс.

Аксиома параллельных прямых

Вспомним, что аксиомой принято называть утверждения, не требующие доказательств.

Через любые две точки на плоскости проходит прямая и притом только одна.

Как построить перпендикулярные прямые и параллельные прямыеАксиома №2 Через точку, не лежащую на данной прямой, можно провести только одну прямую параллельную данной. Как построить перпендикулярные прямые и параллельные прямые

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Следствия из аксиом параллельных прямых

  • Если прямая пересекает одну из параллельных прямых, то она пересекает и другую.

Как построить перпендикулярные прямые и параллельные прямыеНа данном рисунке видно, что а и b параллельные прямые, с – секущая, она пересекает прямую а в точке А, значит и будет пересекать прямую b в некоторой точке С.

  • Если две прямые параллельны третьей, то они параллельны.

Как построить перпендикулярные прямые и параллельные прямыеПо данному рисунку видно, что если прямая CD параллельна АВ и прямая MN параллельна АВ, то CD и MN тоже будут параллельны.

Видео:7 класс, 12 урок, Перпендикулярные прямыеСкачать

7 класс, 12 урок, Перпендикулярные прямые

Перпендикулярные прямые

Две пересекающиеся прямые называются перпендикулярными, если они образуют четыре прямых угла.

Как построить перпендикулярные прямые и параллельные прямыеНа рисунке показаны такие прямые а и b. Запись с помощью символов можно сделать следующим образом: а ⊥ b, где « ⊥ » — знак перпендикулярности. Заметим, что две прямые, перпендикулярные к третьей, не пересекаются. Как построить перпендикулярные прямые и параллельные прямыеНа данном рисунке а ⟂ с, b ⟂ c. Видно, что прямые а и b не пересекаются, то есть они – параллельны.

Видео:Тема ПЕРПЕНДИКУЛЯРНЫЕ ПРЯМЫЕСкачать

Тема ПЕРПЕНДИКУЛЯРНЫЕ ПРЯМЫЕ

Построение параллельных прямых

Вы будете перенаправлены на Автор24

В основе способов построения параллельных прямых с помощью различных инструментов лежат признаки параллельности прямых.

Видео:Перпендикулярные и параллельные прямые. Математика 6 классСкачать

Перпендикулярные и параллельные прямые. Математика 6 класс

Построение параллельных прямых с помощью циркуля и линейки

Рассмотрим принцип построения параллельной прямой, проходящей через заданную точку, с помощью циркуля и линейки.

Пусть дана прямая и некоторая точка А, которая не принадлежит данной прямой.

Необходимо построить прямую, проходящую через заданную точку $А$ параллельно данной прямой.

На практике зачастую требуется построить две или более параллельных прямых без данной прямой и точки. В таком случае необходимо начертить прямую произвольно и отметить любую точку, которая не будет лежать на данной прямой.

Рассмотрим этапы построения параллельной прямой:

  1. Выберем произвольную точку на данной прямой и назовем ее $В$. обратим внимание, что выбор точки абсолютно произвольный, т.к. не влияет на результат построения.
  2. С помощью циркуля и начертим окружность радиуса $АВ$ с центром в точке $В$.

На пересечении окружности и прямой отметим точку и назовем ее $С$.

С тем же радиусом $АВ$ построим окружность с центром в точке $С$. Обратим внимание, что вторая построенная окружность обязательно должна пройти через точку В при правильном выполнении построения.

С прежним радиусом $АВ$ построим третью окружность с центром в точке $А$.

Отметим точку пересечения второй и третьей построенных окружностей и назовем ее $D$. Отметим, что третья окружность при правильном построении также должна пройти через точку $В$.

Через точки $А$ и $D$ проведем прямую, которая будет параллельной заданной.

Таким образом, получили параллельные прямые $ВС$ и $АD$:

$BC parallel AD$, т. $A in AD$.

На практике также применяют метод построения параллельных прямых с помощью чертежного угольника и линейки.

Готовые работы на аналогичную тему

Видео:6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать

6 .7 кл Построение параллельных прямых.Как построить параллельные прямые

Построение параллельных прямых с помощью угольника и линейки

Для построения прямой, которая будет проходить через точку М параллельно данной прямой а, необходимо:

  1. Угольник приложить к прямой $а$ диагональю (смотрите рисунок), а к его большему катету приложить линейку.
  2. Передвинуть угольник по линейке до тех пор, пока данная точка $М$ не окажется на диагонали угольника.
  3. Провести через точку $М$ искомую прямую $b$.

Мы получили прямую, проходящую через заданную точку $М$, параллельную данной прямой $а$:

$a parallel b$, т. $M in b$.

Параллельность прямых $а$ и $b$ видна из равности соответственных углов, которые отмечены на рисунке буквами $alpha$ и $beta$.

Видео:Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

Построение параллельной прямой, отстоящей на заданное расстояние от данной прямой

В случае необходимости построения прямой, параллельной заданной прямой и отстоящей от нее на заданном расстоянии можно воспользоваться линейкой и угольником.

Пусть дана прямая $MN$ и расстояние $а$.

  1. Отметим на заданной прямой $MN$ произвольную точку и назовем ее $В$.
  2. Через точку $В$ проведем прямую, перпендикулярную к прямой $MN$, и назовем ее $АВ$.
  3. На прямой $АВ$ от точки $В$ отложим отрезок $ВС=а$.
  4. С помощью угольника и линейки проведем прямую $CD$ через точку $С$, которая и будет параллельной заданной прямой $АВ$.

Если отложить на прямой $АВ$ от точки $В$ отрезок $ВС=а$ в другую сторону, то получим еще одну параллельную прямую к заданной, отстоящую от нее на заданное расстояние $а$.

Видео:Параллельные и перпендикулярные прямые.Скачать

Параллельные и перпендикулярные прямые.

Другие способы построения параллельных прямых

Еще одним способом построения параллельных прямых является построение с помощью рейсшины. Чаще всего данный способ используют в чертежной практике.

При выполнении столярных работ для разметки и построения параллельных прямых, используется специальный чертежный инструмент – малка – две деревянные планки, которые скрепляются шарниром.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 22 07 2021

📸 Видео

Параллельные прямые циркулемСкачать

Параллельные прямые циркулем

Построение перпендикулярных прямыхСкачать

Построение перпендикулярных прямых

КАК ПОСТРОИТЬ ПЕРПЕНДИКУЛЯРНЫЕ ПРЯМЫЕ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК ПОСТРОИТЬ ПЕРПЕНДИКУЛЯРНЫЕ ПРЯМЫЕ? Примеры | МАТЕМАТИКА 6 класс

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Как построить две взаимно перпендикулярные прямые с помощью циркуляСкачать

Как построить две взаимно перпендикулярные прямые с помощью циркуля

Как провести множество параллельных или перпендикулярных прямых без транспортира?Скачать

Как провести множество параллельных или перпендикулярных прямых без транспортира?

Построение параллельных прямыхСкачать

Построение параллельных прямых

Геометрия 7 класс (Урок№7 - Перпендикулярные прямые.)Скачать

Геометрия 7 класс (Урок№7 - Перпендикулярные прямые.)

6 класс, 43 урок, Перпендикулярные прямыеСкачать

6 класс, 43 урок, Перпендикулярные прямые

Построение перпендикуляра к прямойСкачать

Построение перпендикуляра к прямой

Урок ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕСкачать

Урок ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ
Поделиться или сохранить к себе: