Как посчитать основание треугольника

Треугольник

Треугольник является базовой фигурой геометрии, встречающейся повсеместно. Расчет всех геометрических фигур и тел основаны на наличии в них тех или иных треугольников, благодаря чему становится возможным применить множество теорем и формул, несвойственных конкретным фигурам по отдельности. Равносторонние треугольники, равнобедренные треугольники и прямоугольные треугольники составляют каркас решения геометрических задач, и обладая множеством дополнительных построений внутри треугольника, они предоставляют огромное количество значений тех или иных длин. Все биссектрисы, медианы, высоты, радиусы окружностей, вписанных или описанных около таких треугольников, можно рассчитать в этом разделе через геометрический калькулятор. Для этого необходимо ввести любые имеющиеся вводные данные, и калькулятор выдаст не только значения всех остальных параметров треугольника, но и объяснит преобразования формул, использованные для этих расчетов.

Видео:Найти основание треугольника. Номер 55. Геометрия 7 классСкачать

Найти основание треугольника. Номер 55. Геометрия 7 класс

Основание треугольника – уравнение

Основание треугольника – это такая же сторона, как и две других. Основание редко имеет особое значение, но из-за визуальной обособленности от других сторон, ученики часто путаются и допускают ошибки. Разберем подробнее, как сторона треугольника может считаться основанием, и в каких случаях это действительно имеет значение

Как посчитать основание треугольника

Видео:№107. В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметрСкачать

№107. В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметр

Стороны треугольника

У треугольника всегда три стороны. Одна из них считается основанием. Как правило, основание выделяется только построением, т.е. нижняя сторона треугольника, и приниматься за основание.

Иногда в решении указывают углы при основании произвольного треугольника. Это не совсем верно, поскольку в произвольном треугольнике все углы равнозначны, а значит не имеет смысла выделять углы при основании. Выделяются только углы при основании равнобедренного треугольника.

Как посчитать основание треугольника

Рис. 1. Углы произвольного треугольника.

Нужно учитывать, что любой произвольный треугольник можно условно перевернуть, т.е. перечертить фигуру таким образом, чтобы основанием стала другая сторона. По этому разделять понятие боковых сторон и основания у произвольного треугольника не имеет смысла – это только добавит путаницы в решение задачи.

Уравнение основания треугольника, так же, как и уравнение любой из сторон треугольника, является уравнением прямой линии.

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Равнобедренный треугольник

Равнобедренный треугольник – это единственный подвид треугольника, где основание имеет реальное практическое значение. Равнобедренным треугольником называется треугольник, у которого две стороны равны между собой. Равные стороны зовутся боковыми, а третья сторона считается основанием.

Существует две теоремы об основании равнобедренного треугольника. Это:

  • Теорема о равенстве углов: в равнобедренном треугольнике углы при основании равны.
  • Теорема о равенстве медианы, биссектрисы и высоты, проведенной к основанию. Теорема особенно подчеркивает, что из трех возможных медиан, высот и биссектрис, только проведенные к основанию окажутся равными между собой.

В равнобедренном треугольнике основание определяется значением сторон: равные стороны – боковые, неравная – основание.

Как посчитать основание треугольника

Рис. 2. Равнобедренный треугольник.

По ходу решения задачи может получится так, что основание окажется сбоку, не нужно этого пугаться. Стоит или привыкнуть к такому построению равнобедренного треугольника или каждый раз перечерчивать чертеж, разворачивая треугольник в нужную сторону.

Видео:Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора  |  Геометрия | Алгебра

Равносторонний треугольник

Равносторонний треугольник – это частный случай равнобедренного. У равнобедренного треугольника равны две стороны, а у равностороннего все три. Но именно из-за этого свойства значение основания равнобедренного треугольника теряется.

В равностороннем треугольнике какую сторону не выбери: две другие всегда будут равны между собой, а значит любая сторона может считаться основанием.

Как посчитать основание треугольника

Рис. 3. Равносторонний треугольник.

Существует формула, где часто упоминается слово основание. Это формула площади, которая равна половине произведения основания треугольника на высоту, проведенную к этому основанию. Но в качестве основания может быть принята любая сторона, главное, чтобы именно на нее падала высота. Поэтому и в этом случае выбор стороны треугольника, которую можно считать основанием, некритичен.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Что мы узнали?

Мы узнали, что такое основание треугольника. Поговорили о ситуациях, когда стоит выделять основание среди других сторон треугольника, а когда это окажется напрасной тратой времени. Обсудили значимость основания равнобедренного треугольника.

Видео:Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Видео:Сможешь найти основание? Задача про медиану равнобедренного треугольникаСкачать

Сможешь найти основание? Задача про медиану равнобедренного треугольника

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем Как посчитать основание треугольника.

Как посчитать основание треугольника
Как посчитать основание треугольника
Как посчитать основание треугольника
Как посчитать основание треугольника(1)
Как посчитать основание треугольника(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

Как посчитать основание треугольника.

Пример 1. Известны стороны треугольника ABC: Как посчитать основание треугольникаНайти Как посчитать основание треугольника(Рис.1).

Решение. Из формул (1) и (2) находим:

Как посчитать основание треугольникаКак посчитать основание треугольника.
Как посчитать основание треугольникаКак посчитать основание треугольника.
Как посчитать основание треугольника, Как посчитать основание треугольника.

И, наконец, находим угол C:

Как посчитать основание треугольникаКак посчитать основание треугольника

Видео:Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Как посчитать основание треугольника

Найдем сторону c используя теорему косинусов:

Как посчитать основание треугольника.
Как посчитать основание треугольника.

Далее, из формулы

Как посчитать основание треугольника.
Как посчитать основание треугольника.(3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

Как посчитать основание треугольника.

Пример 2. Известны две стороны треугольника ABC: Как посчитать основание треугольникаи Как посчитать основание треугольника(Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

Как посчитать основание треугольника,
Как посчитать основание треугольникаКак посчитать основание треугольникаКак посчитать основание треугольника.

Из формулы (3) найдем cosA:

Как посчитать основание треугольникаКак посчитать основание треугольника
Как посчитать основание треугольника.

Поскольку уже нам известны два угла то находим третий:

Как посчитать основание треугольникаКак посчитать основание треугольника.

Видео:КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Как посчитать основание треугольника

Так как, уже известны два угла, то можно найти третий:

Как посчитать основание треугольника.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Как посчитать основание треугольника, Как посчитать основание треугольника.
Как посчитать основание треугольника, Как посчитать основание треугольника.

Пример 3. Известна одна сторона треугольника ABC: Как посчитать основание треугольникаи углы Как посчитать основание треугольника(Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Как посчитать основание треугольникаКак посчитать основание треугольника

Найдем сторону b. Из теоремы синусов имеем:

Как посчитать основание треугольника
Как посчитать основание треугольника

Найдем сторону с. Из теоремы синусов имеем:

🔍 Видео

Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

№158. Основание равнобедренного треугольника равно 8 см. Медиана, проведенная к боковой сторонеСкачать

№158. Основание равнобедренного треугольника равно 8 см. Медиана, проведенная к боковой стороне

Как высчитать квадратуру из треугольника,трапеции и т. д.Скачать

Как высчитать квадратуру из треугольника,трапеции и т. д.

Как найти площадь треугольника без формулы?Скачать

Как найти площадь треугольника без формулы?

№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.Скачать

№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.

№259. Угол, противолежащий основанию равнобедренного треугольника, равен 120°. Высота, проведеннаяСкачать

№259. Угол, противолежащий основанию равнобедренного треугольника, равен 120°. Высота, проведенная

По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Найдите сторону треугольника на рисункеСкачать

Найдите сторону треугольника на рисунке

Нахождение сторон равнобедренного треугольникаСкачать

Нахождение сторон равнобедренного треугольника

№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторонаСкачать

№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторона

8 класс, 14 урок, Площадь треугольникаСкачать

8 класс, 14 урок, Площадь треугольника
Поделиться или сохранить к себе: