- Общие сведения
- Особые линии и точки
- Основные формулы
- Решение задач
- Треугольная пирамида и формулы для определения ее площади
- О какой пирамиде пойдет речь?
- Элементы пирамиды
- Основание пирамиды и его площадь
- Боковая и общая площадь фигуры
- Пример задачи
- Чертежик
- Метки
- Натуральная величина треугольника с описанием.
- Алгоритм определения натуральной величины плоскости:
- Замена плоскостей проекции
- Плоскопараллельное перемещение
- 🎬 Видео
Видео:Найдите сторону треугольника на рисункеСкачать
Общие сведения
Любое пространство можно описать размерностью. В трёхмерном измерении плоская геометрическая фигура, состоящая из трёх отрезков и такого же количества точек, в которых они соединяются, называется треугольником. Отрезки называют сторонами или боковыми гранями, площадь, ограниченная ими — внутренней, а точки — вершинами. Фигура имеет 3 угла и является невырожденной.
Строгого требования к обозначениям элементов многоугольника нет. Но традиционно вершины подписывают заглавными буквами латинского алфавита A, B, C, а противолежащие им стороны — аналогичными строчными знаками. В качестве обозначений для углов используют греческие символы: α, β, γ. Например, если имеется треугольник ABC, у него будут углы A, B, C и стороны a, b, c. Боковые грани могут подписываться и как отрезки, тогда в их имени учитываются ограничивающие точки. Например, AB, BC, CA.
В зависимости от соотношения размеров сторон, все треугольники разделяют на 3 вида. Они бывают:
- Равнобедренными — многоугольники, у которых одна сторона не равна двум другим. Эта грань называется основанием. Углы при этой стороне равны.
- Разносторонние (неправильные) — длины всех граней разные.
- Равносторонние — треугольники, имеющие одинаковые стороны. Часто эти фигуры называют правильными. По сути, они являются частным случаем равнобедренного многоугольника.
Существуют правила, позволяющие утверждать о равенстве или подобии двух и более треугольников. Они считаются идентичными, то есть их параметры полностью совпадают, если 2 стороны и угол равны или все грани имеют одинаковую длину. А также фигуры будут одинаковыми, когда у них совпадают 2 стороны и угол, располагающийся напротив большего отрезка.
Признаки подобия помогают определить вид треугольника при сравнении с известным. Если 2 любых угла равны в обеих фигурах, они считаются похожими. Когда же 2 стороны многоугольника пропорциональны двум отрезкам другого, причём углы, заключённые между этими гранями, равны, такие фигуры подобны.
Видео:Нахождение стороны прямоугольного треугольникаСкачать
Особые линии и точки
Медиана, высота и биссектриса — 3 замечательные линии любого треугольника. Представляют они собой внутренние отрезки, построенные из углов на противоположные стороны. Линия, соединяющая вершину с серединой противоположной грани, называется медианой. Луч, разделяющий угол на 2 равные части — это биссектриса, а перпендикуляр, построенный к стороне — высота.
В любом правильном треугольнике можно начертить 3 отрезка. Если отложить медиану, а потом биссектрису и высоту, можно заметить, что эти линии совпадут. Эта особенность и есть замечательным свойством равностороннего многоугольника, то есть если в любой другой трёхугольной фигуре можно построить 12 особых линий, то в рассматриваемом только 3.
Доказать это утверждение можно следующим образом: пусть имеется треугольник АВС, в котором проведена высота ВH. Далее, рассуждения нужно построить так:
- Отрезок BH перпендикулярен прямой AC по построению.
- Точка H разделяет отрезок AC на AD и CD. Если это утверждение будет верным, это означает, что построенная высота BH будет медианой треугольника.
- Отрезок BH создаёт в многоугольнике 2 угла — ∠ABH и ∠CBH. При верности этого утверждения можно утверждать, что отрезок BH является биссектрисой.
Если создать зеркальное отражение треугольнику и совместить его с оригинальным, все углы попарно совместятся. Совпадут и стороны. Так как ВH — высота, она перпендикуляр. Значит, в точке H отрезок образует прямой угол с боковой гранью AC. Отсюда следует, что образованные треугольники AHB и CBH прямоугольные.
Они являются равными по общей гипотенузе и острому углу. Это следует из того, что правильный многоугольник — частный случай равнобедренного. Так как треугольники совпадают, у них одинаковые углы ABH и CBH. Причём они смежные, поэтому BH — биссектриса. В то же время точка H делит AC на 2 равных отрезка, значит, BH — медиана.
Точка, в которой пересекаются отрезки, будет центром тяжести фигуры. Её особенность в том, что она разделяет эту линию на 2 части в отношении 2 к 1, если считать от угла. Кроме этого, из-за равенства медианы и биссектрисы эта точка будет и ортоцентром.
Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать
Основные формулы
Для каждого треугольника существует набор формул, с помощью которых можно определить его элементы. Чаще всего приходится выяснять длины сторон, площадь, высоты и периметр. При этом если известны боковые грани, можно найти практически любые остальные параметры.
Вокруг правильной фигуры можно описать круг, причём окружность можно и вписать в середину. Что интересно, их центры совпадут между собой и с местом пересечения высот. В этом случае радиус внешнего круга равняется R = (a * √3) / 3 = a / 2 * sin (a), а внутреннего: r = (a * √3) / 6 = R / 2. Чтобы найти высоту, зная радиус, используют выражение: h = (3 *R) / 2. Кроме этой формулы, довольно часто применяют равенство, связывающее сторону и перпендикуляр: h = (a * √3) / 2.
Доказательство верности формулы для нахождения радиуса вписанной окружности можно построить исходя из выражения, справедливого к равнобедренной фигуре: r = b / 2 √((2 a — b) / (2 a + b)). Так как стороны равны, то a = b. Получается, что r = a / 2 √(2a — a) / (2a + a) = (a / 2) * √(1 / 3) = a / (2 * √3) = (a √3) / 6.
Чтобы определить длину стороны, нужно знать высоту и теорему Пифагора. Согласно ей, квадрат гипотенузы находится как сумма квадратов высоты и длины разделённого основания. Применяя теорему к правильной фигуре, можно записать: AB 2 = h 2 + (AB / 2) 2 . Это равенство решают следующим образом: AB 2 = h 2 + AB 2 / 2 2 . Выражение можно преобразовать в вид: (3a 2 / 4) = h 2 → a 2 = (4 * h 2 ) / 3 → a 2 = √((4 * h 2 ) / 3) → a = (2 * h) / √3.
Из других существующих формул можно перечислить те, что чаще всего применяют при решении примеров:
- Площадь. Находят из выражения: S = (a 2 * √3) / 4. Вывести эту формулу довольно просто. Если взять за основу, что равенство для площади верно, то исходя из свойств фигуры можно записать: S = ½ * a 2 * sin 60 = ½ * a 2 * √3 / 2 = (√3 / 4) * a 2 . Что и следовало доказать.
- Периметр. Чтобы его определить, нужно сложить длины всех сторон, но так как в правильной фигуре они равны, можно воспользоваться формулой: P = 3 * a.
Существуют ещё 2 значимые теоремы: косинусов и синусов. Согласно первой, квадрат стороны фигуры будет ранятся удвоенному произведению двух оставшихся отрезков и косинусу угла между ними, отнятому из суммы квадратов: a 2 = b 2 + c 2 — 2 * b * c * cos (a). Согласно же второй, длины отрезков пропорциональны синусам углов, лежащих напротив: a / sin (a) = b / sin (b) = c / sinс.
Видео:Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать
Решение задач
Чтобы уметь решать различные задания, связанные с треугольником, нужно помнить всего несколько формул. Но понадобится знать, что углы в фигуре равны друг другу и составляют 60 градусов. Часто придётся применять и теорему Пифагора. Вот некоторые из типовых заданий, используемые при обучении школьников в седьмом классе:
- Какой будет радиус вписанной в правильный треугольник окружности, если его высота равняется 9 см. Зная свойство фигуры, решить задачу можно за пару секунд. Так как радиус равен 1/3 высоты, ответом на задачу будет: r = h / 3 = 9 / 3 = 3 см.
- Сторона равностороннего треугольника равняется корню из трёх. Определить диаметр описанной окружности. Известно, что отношение синуса к противолежащему углу составляет 2R. Следовательно: R = a / 2 * sin (a) = √3 * 2 / 2 * √3 = 1.
- Вокруг треугольной фигуры со стороной 8 √3 описан круг. Узнать его радиус. Эта задача в 2 действия. Используя формулу для нахождения вписанного радиуса и определение r = R / 2 можно записать: R = 2 * a * √3 / 6 = 2 * 8 * √3 * √3 / 6 = 2 * 4 = 8.
- Пусть имеется квадрат, вокруг которого описана окружность. В ней так же располагается правильный треугольник. Периметр треугольной фигуры равен 9 √ 6. Нужно вычислить сумму всех сторон квадрата. На первом шаге необходимо определить длину боковой грани треугольника. Найти её можно по формуле: a = 3 √6. Теперь возможно рассчитать радиус описанной окружности: a = R * √3. Выполнив подстановку, найти ответ несложно: R = 3 √6 / √3 = 3 * √2. На третьем шаге можно выяснить, чему равняется сторона четырёхугольника. В этом поможет равенство: 3 √2 = (n √2) / 2. Отсюда n = 6. Значит, периметр квадрата равняется: P = 4 * 6 = 24.
Проверить правильность решения, возможно, используя онлайн-калькуляторы. Это сервисы, которые предлагают бесплатно вычислить элементы правильной фигуры. При этом от пользователя требуется лишь внести в специальную форму исходные данные и нажать кнопку «Рассчитать».
Следует отметить, что выучить наизусть все формулы сложно, поэтому обычно используют логическое мышление и теоремы синусов-косинусов. Учитывая, что любой угол в равностороннем треугольнике равен 60 градусов практически любую формулу вывести можно самостоятельно.
Видео:Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать
Треугольная пирамида и формулы для определения ее площади
Пирамида — геометрическая пространственная фигура, характеристики которой изучают в старших классах школы в курсе стереометрии. В данной статье рассмотрим треугольную пирамиду, ее виды, а также формулы для расчета площади ее поверхности.
Видео:Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрииСкачать
О какой пирамиде пойдет речь?
Треугольная пирамида представляет собой фигуру, которую можно получить, если соединить все вершины произвольного треугольника с одной единственной точкой, не лежащей в плоскости этого треугольника. Согласно этому определению рассматриваемая пирамида должна состоять из исходного треугольника, который называется основанием фигуры, и трех боковых треугольников, которые имеют по одной общей стороне с основанием и соединены друг с другом в точке. Последняя называется вершиной пирамиды.
Вам будет интересно: Защита проекта: образец. Темы для защиты проекта. Требования к проектной работе
Рисунок выше демонстрирует произвольную треугольную пирамиду.
Рассматриваемая фигура может быть наклонной или прямой. В последнем случае перпендикуляр, опущенный из вершины пирамиды на ее основание, должен его пересекать в геометрическом центре. Геометрическим центром любого треугольника является точка пересечения его медиан. Геометрический центр совпадает с центром масс фигуры в физике.
Если в основании прямой пирамиды будет лежать правильный (равносторонний) треугольник, то она называется правильной треугольной. В правильной пирамиде все боковые стороны равны друг другу и представляют собой равносторонние треугольники.
Если высота правильной пирамиды такова, что ее боковые треугольники становятся равносторонними, то она называется тетраэдром. В тетраэдре все четыре грани равны друг другу, поэтому каждая из них может полагаться основанием.
Видео:Найдите третью сторону треугольникаСкачать
Элементы пирамиды
К этим элементам относятся грани или стороны фигуры, ее ребра, вершины, высота и апофемы.
Как было показано, все стороны треугольной пирамиды являются треугольниками. Их число равно 4 (3 боковых и один в основании).
Вершины — это точки пересечения трех треугольных сторон. Не сложно догадаться, что для рассматриваемой пирамиды их 4 (3 принадлежат основанию и 1 — вершина пирамиды).
Ребра можно определить, как линии пересечения двух треугольных сторон, или как линии, которые соединяют каждые две вершины. Количество ребер соответствует удвоенному числу вершин основания, то есть для треугольной пирамиды оно равно 6 (3 ребра принадлежат основанию и 3 ребра образованы боковыми гранями).
Высота, как выше было отмечено, является длиной перпендикуляра, проведенного из вершины пирамиды к ее основанию. Если из этой вершины провести высоты к каждой из сторон треугольного основания, то они будут называться апотемами (или апофемами). Таким образом, пирамида треугольная имеет одну высоту и три апофемы. Последние равны друг другу для правильной пирамиды.
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Основание пирамиды и его площадь
Поскольку основание для рассматриваемой фигуры в общем случае представляет собой треугольник, то для расчета его площади достаточно найти его высоту ho и длину стороны основания a, на которую она опущена. Формула для площади So основания имеет вид:
Если треугольник основания является равносторонним, тогда площадь основания треугольной пирамиды вычисляется по такой формуле:
То есть площадь So однозначно определяется длиной стороны a треугольного основания.
Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Боковая и общая площадь фигуры
Прежде чем рассматривать площадь треугольной пирамиды, полезно привести ее развертку. Она изображена на рисунке ниже.
Площадь этой развертки, образованной четырьмя треугольниками, является общей площадью пирамиды. Один из треугольников соответствует основанию, формула для рассматриваемой величины которого была записана выше. Три боковых треугольных грани в сумме образуют боковую площадь фигуры. Поэтому для определения этой величины достаточно к каждому из них применить записанную выше формулу для произвольного треугольника, а затем, сложить три полученных результата.
Если пирамида является правильной, то расчет площади боковой поверхности облегчается, поскольку все грани боковые представляют собой одинаковые равносторонние треугольники. Обозначим hb длину апотемы, тогда площадь боковой поверхности Sb можно определить так:
Эта формула следует из общего выражения для площади треугольника. Цифра 3 появилась в числители из-за того, что пирамида имеет три боковых грани.
Апотему hb в правильной пирамиде можно вычислить, если известна высота фигуры h. Применяя теорему Пифагора, получаем:
Очевидно, что общая площадь S поверхности фигуры равна сумме ее площадей боковой поверхности и основания:
Для правильной пирамиды, подставляя все известные величины, получаем формулу:
S = √3/4*a2 + 3/2*a*√(h2 + a2/12)
Площадь пирамиды треугольной зависит только от длины стороны ее основания и от высоты.
Видео:Самые опасные астероиды и как с ними боротьсяСкачать
Пример задачи
Известно, что боковое ребро треугольной пирамиды равно 7 см, а сторона основания составляет 5 см. Необходимо найти площадь поверхности фигуры, если известно, что пирамида является правильной.
Воспользуемся равенством общего вида:
Площадь So равна:
So = √3/4*a2 = √3/4*52 ≈ 10,825 см2.
Для определения площади боковой поверхности, необходимо найти апотему. Не сложно показать, что через длину бокового ребра ab она определяется по формуле:
hb = √(ab2 — a2/4) = √(7 2 — 52/4) ≈ 6,538 см.
Тогда площадь Sb равна:
Sb = 3/2*a*hb = 3/2*5*6,538 = 49,035 см2.
Общая площадь пирамиды составляет:
S = So + Sb = 10,825 + 49,035 = 59,86 см2.
Заметим, что при решении задачи мы не использовали в расчетах значение высоты пирамиды.
Видео:Почти никто не решил ➜ Найдите сторону треугольникаСкачать
Чертежик
Метки
Видео:Второй признак равенства треугольников. 7 класс.Скачать
Натуральная величина треугольника с описанием.
Натуральная величина треугольника определяется 2 методами:
- замена плоскостей проекции;
- плоскопараллельное перемещение.
Это задание является обязательным для студентов в учебных заведениях и для его решения необходимо изучить тему: » Способы преобразования чертежа».
Для наглядности я использовал определенное задание и на его примере покажу как находится натуральная величина треугольника.
Алгоритм определения натуральной величины плоскости:
Замена плоскостей проекции
1.) Для построения чертежа использовал задание, расположенное снизу. Первоначально строятся точки по координат в плоскостях П1 и П2.
2.) Строится дополнительная горизонтальная линия 1 1 в верхнем изображении (проводится линия от средне расположенной точки по высоте), затем опускают дополнительные отрезки на нижнее изображение (как указано на рисунке снизу) и соединяют прямой. Эта прямая необходима для того, чтобы на ней расположить вспомогательную плоскость.
3.) Построив прямую на нижнем рисунке, чертится под углом 90 0 ось Х 1 (от точки С1 располагаем на произвольном расстоянии, но не слишком далеко). Затем отмеряются расстояния:
- от С2 до оси Х;
- от В2 до оси Х;
- от А0 до оси Х.
Полученные размеры откладываются от оси Х1 (размеры указаны разными цветами на рисунке снизу) и соединяют, далее подписываются точки.
4.) Строится еще одна дополнительная ось Х2, расположенная параллельно отрезку В 4 С 4 А 4. От точек В4,С4 и А4 проводят прямые перпендикулярные оси Х2.
5.) Отмеряются расстояния:
- от В1 до Х1;
- от С1 до Х1;
- от А1 до Х1.
Полученные результаты измерений откладываются от иси Х2 (на изображении снизу отмечены зелеными и голубым цветами).
6.) Соединяются точки и подписывают полученную плоскость заглавными «Н.В.»
Плоскопараллельное перемещение
7.) Откладывается отрезок на оси Х (обозначен синим цветом).
8.) Переносятся точки на текущее построение.
9.) Соединяют точки, получившиеся при переносе из плоскостей проекций. 10.) Методом вращения точки А2′, С2′ переносятся на горизонтальную прямую, а точка В2′ не меняет свое положение (относительно ее и происходило вращение).11.) Откладывается точка (располагают от оси Х на небольшом расстоянии, т.е. произвольном), относительно которой и будет откладываться плоско параллельное перемещение плоскости. 12.) От точек А2′, С2′ и В2′ опускаются прямые. Далее циркулем необходимо отмерить расстояния:
Затем эти размеры откладываются от С1′ (обозначены красным и синим цветами).
13.) Соединяются и подписываются точки (А1′, В1′ и С1′). Опускают прямые от С2″ и А2″14.) От точек С1 и А1 отводят прямые до пересечения с прямыми опущенными от точек С2″ и А2″. В месте пересечения ставится точка.15.) Завершающим шагом является соединение точек и обводка линиями всего чертежа.Пример чертежа на тему «Натуральная величина треугольника» смотрите здесь.
🎬 Видео
Уравнения стороны треугольника и медианыСкачать
Формулы равностороннего треугольника #shortsСкачать
Площадь треугольника. Как найти площадь треугольника?Скачать
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Теорема Пифагора для чайников)))Скачать
9 класс, 15 урок, Решение треугольниковСкачать
№250. Найдите сторону равнобедренного треугольника, если две другие стороны равны: а) 7 см и 3 смСкачать
Длина медианы треугольникаСкачать