Инверсия симметрия относительно окружности

Инверсия симметрия относительно окружности

Познакомимся еще с одним геометрическим преобразованием, называемым инверсией , или преобразованием посредством обратных радиусов, или симметрией относительно окружности. Первый термин короче (поэтому в наш «век скоростей» употребляется чаще), но второй и третий точнее характеризуют предмет, к которому относится: слово инверсия чрезвычайно многозначно, в том числе и в математике; например, инверсией иногда называется центральная симметрия в пространстве – см. урок «Перемещения». Буквальный перевод с латыни слова inversio – «обращение»: все значения слова «инверсия» связаны с каким-то переворачиванием или «выворачиванием наизнанку» прежнего порядка вещей (например, центральная симметрия в пространстве относительно начала координат меняет значения всех координат на противоположные, и сверх того – в отличие от центральной симметрии на плоскости – нарушает ориентацию).

Инверсией относительно окружности с центром и радиусом называется преобразование, которое каждой точке ставит в соответствие точку , лежащую на луче и удаленную от на расстояние : отсюда и название «преобразование посредством обратных радиусов»: радиусы – расстояния от точки до точек и обратны друг другу. Легко видеть, что при инверсии точки, лежащие вне окружности, переходят внутрь нее, а точки, лежащие внутри – наружу; поэтому, собственно, преобразование и называется инверсией. Точки окружности при инверсии преобразуются сами в себя. Инверсия относительно одной и той же окружности, примененная два раза, возвращает точку в прежнее положение: таким образом, обратным к инверсии преобразованием является та же самая инверсия.

Построить образ точки при инверсии несложно: если точка лежит внутри окружности, то надо провести через эту точку диаметр и перпендикулярную ему хорду, а затем найти точку пересечения касательных к окружности в концах хорды. Если же исходная точка лежит вне окружности, то надо провести из этой точки касательные к окружности, соединить их и найти точку пересечения получившейся хорды с прямой, которая соединяет исходную точку с центром окружности.

Инверсия симметрия относительно окружности

Такие две точки будут взаимно инверсными. В самом деле: прямоугольные треугольники и 1 подобны по общему острому углу при вершине , следовательно, , откуда . Этот вывод сделан еще в «Конических сечениях» Аполлония. Если вы внимательно ознакомились с предыдущим уроком, вы уже поняли: прямая, проходящая через 1 перпендикулярно прямой окружности – не что иное, как поляра точки , и наоборот. Таким образом, четверка , , и – гармоническая.

Посмотрите, как меняются положения образа при инверсии, если двигать исходную точку.

Согласно Паппу, Аполлоний ставил и решал вопросы о том, как преобразуются при инверсии прямая и окружность. Нетрудно убедиться, что прямые, проходящие через центр инверсии, переходят в себя. Все другие прямые переходят в окружности, проходящие через : пусть угол прямой, тогда = , поэтому , треугольники и подобны по стороне и общему углу при вершине , следовательно, угол прямой.

Инверсия симметрия относительно окружности

Окружности, проходящие через центр инверсии, переходят в прямые. Все другие окружности переходят в окружности – доказательство производится сходным методом с рассмотрением равных углов и подобных треугольников.

Инверсия симметрия относительно окружности

Инверсия, таким образом, переводит окружности и прямые снова в окружности и прямые: преобразования, обладающие этим свойством, называются круговыми преобразованиями. Все круговые преобразования могут быть получены композицией инверсии с каким-либо преобразованием подобия.

Замечательным свойством инверсии является то, что она сохраняет углы между линиями (то есть между касательными к ним в точках их пересечения): такого рода преобразования называются конформными преобразованиями . Это более широкая группа, нежели круговые преобразования.

Окружность, инверсная сама себе, перпендикулярна окружности инверсии: касательные к этим двум окружностям в каждой точке их пересечения перпендикулярны. Таким образом, у данных окружностей перпендикулярны радиусы, проведенные в точке пересечения.

Инверсия симметрия относительно окружности

Термин «симметрия относительно окружности» объясняется определенными аналогиями инверсии с осевой симметрией. В частности, как известно, точку, симметричную данной относительно некоторой оси, можно построить как вторую точку пересечения двух окружностей, перпендикулярных оси симметрии. Точно так же точку, образ точки при инверсии можно построить как вторую точку пересечения двух окружностей, перпендикулярных окружности инверсии.

Инверсия симметрия относительно окружности

Строго говоря, инверсия – преобразование не всей плоскости в себя: центр окружности инверсии не отображается никуда, и в него тоже, соответственно, ничего не отображается. Для удобства при рассмотрении инверсии к плоскости присоединяют бесконечно удаленную точку – точку, в которую при инверсии переходит центр окружности инверсии. Эта точка – общая у всех прямых: параллельные прямые в ней касаются, а прямые общего положения имеют ее своей второй точкой пересечения; таким образом, прямые на такой пополненной плоскости пересекаются в двух точках, как окружности. Такую пополненную бесконечно удаленной точкой плоскость называют плоскостью Мёбиуса в честь великого немецкого геометра, создавшего в 1850 г. общую теорию круговых преобразований. Плоскость Мёбиуса отличается от проективной плоскости, которая имеет не одну бесконечно удаленную точку, а целую бесконечно удаленную прямую. По аналогии с инверсией на плоскости можно рассматривать инверсию в пространстве – симметрию относительно сферы. Инверсия тесно связана со стереографической проекцией сферы на плоскость. А именно, стереографическая проекция сферы совпадает с инверсией этой сферы относительно касающейся ее вдвое большей сферы.

Инверсия симметрия относительно окружности

Точки, инверсные друг другу (иногда называемых «взаимными полюсами»), рассматривались давно (например, Аполлонием); иногда они назывались «взаимными полюсами». Тем не менее, инверсия как преобразование начала изучаться в основном в XIX в., что было связано с общим уяснением понятия геометрического преобразования; впервые такое рассмотрение было осуществлено в 1831 г. шведским математиком Л. Магнусом и немецким математиком Ю. Плюккером.

Интерес к инверсии сильно возрос после того, как в 1845 г. физик Уильям Томсон (будущий лорд Кельвин – именно в честь него единица измерения абсолютной температуры в системе СИ называется кельвином) развил т. н. метод изображений в теории электрического потенциала. Электрический потенциал – физическая величина, которая меняется в присутствии заряженных тел и в разных точках пространства имеет разные значения. Линии электрического поля перпендикулярны поверхностям равного потенциала.

Инверсия симметрия относительно окружности

Определить, каков будет электрический потенциал, создаваемый по-разному расположенными зарядами в разных условиях, – нетривиальная задача, в XIX в. привлекшая внимание целого ряда математиков, в том числе великого Гаусса. Томсон рассматривал, каковым станет поле вблизи проводников, например, металлических. Во всех точках проводника потенциал должен быть одинаков (при условии, что ток не течет – нет источника тока).

Предположим, у нас есть металлическая сфера радиуса , и на расстоянии от ее центра в точку помещен точечный заряд .

Инверсия симметрия относительно окружности

Если бы металлической сферы не было, определить потенциал не составило бы труда: потенциал φ, создаваемый точечным зарядом , обратно пропорционален расстоянию от него Инверсия симметрия относительно окружности

Инверсия симметрия относительно окружности

Но присутствие проводника искажает эту картину, потому что заряд влияет на электроны в проводнике, которые легко в нем перемещаются (если внешний заряд положительный, электроны сместятся на ближнюю к нему сторону сферы, а противоположная зарядится отрицательно). Они распределятся так, чтобы поверхность сферы стала эквипотенциальной. Оказывается, это эквивалентно тому, как если бы в пространство проводника поместили другой заряд – причем он должен располагаться в точке, инверсной расположению первого заряда относительно сферы.

Инверсия симметрия относительно окружности

Определим положение этого другого заряда и его величину. Пусть его величина ′, находится он в точке , а – некоторая точка сферы, . Тогда потенциал, создаваемый в этой точке первым зарядом, равен Инверсия симметрия относительно окружностивторым Инверсия симметрия относительно окружностиа суммарный Инверсия симметрия относительно окружностии это число должно быть постоянным: единственный способ этого добиться – считать, что оно равно нулю, а расстояния пропорциональны зарядам, то есть отношение расстояний до двух точек, где расположены заряды, одно и то же для всех точек сферы: Инверсия симметрия относительно окружностиРассмотрим треугольник . Отношение его сторон и равно отношению отрезков и , а также и : здесь – биссектриса внутреннего угла, а – внешнего. Т. к. две этих биссектрисы перпендикулярны друг другу, угол – прямой. Значит, если отношение Инверсия симметрия относительно окружностипостоянно, то как раз и лежит на сфере с диаметром . Четверка точек , , и гармоническая, а значит, точка – образ точки при инверсии относительно сферы, и Инверсия симметрия относительно окружности

Видео:#7str. Как использовать инверсию?Скачать

#7str. Как использовать инверсию?

Инвариантные окружности инверсии

Ортогональные окружности. Углом между двумя кривыми
(в частности, между двумя окружностями) называется угол между
касательными к этим кривым в их общей точке. Две пересекающиеся
окружности называются ортогональными (друг другу), если касательные к ним в точке пересечения перпендикулярны (рис. 5). Согласносвойству касательной к окружности центр каждой из двух ортогональных окружностей лежит на касательной к другой окружности в точке их пересечения.

Инверсия симметрия относительно окружности

Теорема 4. Окружность г, ортогональная к окружности инверсии, отображается этой инверсией на себя (инвариантна при инверсии).

Доказательство. Если М — произвольная точка окружности г и прямая ОМ пересекает окружность г вторично в точке М‘, то по свойству секущих ОМ*ОМ’=ОТ 2 =R 2 , т.е. точки М и М’ взаимно инверсны относительно окружности щ (рис. 5). Следовательно, окружность г отображается на себя.

Теорема 5 (обратная). Если окружность г, отличная от окружности инверсии, отображается инверсией на себя, то она ортогональна окружности инверсии.

Доказательство. Соответственные точки М и М’ окружности г лежат на одном луче с началом О, причем одна из них вне, другая — внутри окружности щ инверсии (рис. 5). Поэтому окружность г пересекает окружность щ. Пусть Т — одна из точек их пересечения. Докажем, что ОТ — касательная к окружности г. Если бы прямая ОТ пересекала г еще в другой точке Т1, то по свойству секущих ОТ * ОТ1=R 2 . Но ОТ=R и поэтому ОТ1= R, т.е. точки Т и Т1 совпадают, прямая ОТ касается г в точке Т, окружности щ и г ортогональны.

Инверсия как симметрия относительно окружности. Инверсия относительно окружности имеет аналогию с осевой симметрией.

Теорема 6. Окружность, содержащая две инверсные точки, инвариантна при данной инверсии (следовательно, ортогональна окружности инверсии).

Доказательство. Если окружность г содержит точки А и А’, соответственные при инверсии относительно окружности щ, то центр О инверсии лежит вне отрезка АА’, т.е. вне окружности г (рис. 6). Пусть М — произвольная точка окружности г и прямая ОМ пересекает г вторично в точке М’. Тогда по свойству секущих ОМ * ОМ’ = OA * OA’ = R 2 .

Поэтому точки М и М’ взаимно инверсны, и окружность г отображается инверсией на себя.

Следствие. Если две пересекающиеся окружности ортогональны к окружности инверсии, то точки их пересечения взаимно инверсны.

Действительно, если А — одна из точек

пересечения окружностей б и в, каждая из которых ортогональна к окружности щ инверсии, то прямая

OA пересекает как окружность б, так и окружность в в образе А’ точки А (рис. 7).

Иначе говоря, образом точки А, не лежащей на окружности инверсии, служит вторая точка пересечения любых двух окружностей, проходящих через точку А и ортогональных к окружности инверсии.

Это свойство может быть положено в основу определения инверсии.

Инверсия симметрия относительно окружности

Возьмем теперь вместо окружности щ прямую щ как предельный случай окружности (окружность бесконечно большого радиуса). Центры окружностей б и в, ортогональных прямой щ, лежат на этой прямой. Предыдущее свойство инверсии (второе ее определение) приводит к тому, что точки А и А’ пересечения окружностей б и в симметричны относительно прямой щ (рис. 8).

Видео:Инверсия | Олимпиадная математикаСкачать

Инверсия | Олимпиадная математика

Презентация по геометрии по теме «Инверсия»

Видео:Осевая симметрия. 6 класс.Скачать

Осевая симметрия. 6 класс.

«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»

Сертификат и скидка на обучение каждому участнику

Инверсия симметрия относительно окружности

Инверсия симметрия относительно окружности

Видео:Ось симметрииСкачать

Ось симметрии

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Инверсия Выполнил: Патрина В. А., учитель математики Средней общеобразовательной школы № 50 ОАО «РЖД»

Цели: Выяснить что такое инверсия; Увидеть как она применяется при решении задач на построение; Как выполнить такое построение; Дать определение инверсии, её свойств; Рассмотреть построения с помощью инверсии.

Инверсия -(относительно данной окружности) точечное преобразование плоскости самой в себя, при котором каждой точке ставится в соответствие точка ‘, лежащая на луче и удовлетворяющая условию |OP| · |OP’| = ,

Свойства инверсии Внутренние точки окружности инверсии преобразуются во внешние и наоборот (поэтому говорят также о зеркальном отображении относительно окружности); точки самой окружности инверсии остаются неподвижными, то есть преобразуются сами в себя. Преобразование, обратное для данной инверсии, есть также инверсия, то есть если точка Р переходит при инверсии в точку Р’, то одновременно, обратно, точка Р’ переходит в точку Р.

Свойства инверсии а) Окружности, не проходящие через O, преобразуются в окружности, не проходящие через O. б) Окружности, проходящие через O, преобразуются в прямые, не проходящие через O. в) Прямые, не проходящие через O, преобразуются в окружности, проходящие через O; прямые, проходящие через O, преобразуются сами в себя.

Свойства инверсии Прямая, не проходящая через центр инверсии, преобразуется в окружность, проходящую через центр инверсии, причём касательная к этой окружности в центре инверсии параллельна данной прямой. Прямые, параллельные и не проходящие через центр инверсии, преобразуются в окружности, касающиеся друг друга в центре инверсии и обратно. Инверсия есть конформное преобразование, то есть при инверсии угол между двумя кривыми в точке их пересечения сохраняется. При этом, если углы рассматривать как ориентированные, то ориентация углов при применении инверсии изменяется на противоположную.

Свойства инверсии Как бы ни были расположены в плоскости две произвольные окружности, или окружность и прямая, или две параллельные прямые, всегда можно их преобразовать друг в друга при помощи инверсии, если к инверсии причислить его предельный случай – симметрию относительно прямой. 8. Всякую окружность (или прямую) можно при помощи инверсии преобразовать саму в себя так, чтобы две фиксированные точки этой окружности (или прямой) переходили друг в друга. При инверсии плоскость, проходящая через центр инверсии (без центра инверсии), преобразуется в себя.

Свойства инверсии а) Ортогональные траектории эллиптического пучка окружностей, пересекающихся попарно в точках A и B, образуют гиперболический пучок окружностей, имеющий точки A и B предельными точками и прямую AB линией центров. б) Ортогональные траектории параболического пучка окружностей образуют также параболический пучок окружностей с тем же центром пучка и с линией центров, перпендикулярной к линии центров данного пучка. в) Ортогональные траектории гиперболического пучка окружностей с предельными точками A и B образуют эллиптический пучок окружностей, попарно пересекающихся в точках A и B.

Теоремы инверсии Теорема 1. Если две кривые пересекаются в точке P, то инверсные им кривые пересекаются в точке Р1, инверсной точке Р. Теорема 2. Прямая, проходящая через центр инверсии О, сама себе инверсна. Теорема 3 . Кривая, инверсна данной прямой , не проходящей через центр инверсии, есть окружность, проходящая через центр инверсии , причем всегда .

Свойства инверсии Теорема 4 . Кривая, инверсна данной окружности (О1; R), не проходящей через центр инверсии, есть так же окружность. Центр инверсии является при этом центром подобия этих окружностей.

Практическое применение инверсии Теорема Мора-Маскерони. Все построения, выполненные с помощь циркуля и линейки, могут быть проделаны только с помощью циркуля (при этом мы считаем прямую построенной, если найдены хотя бы две точки этой прямой).

Практическое применение инверсии Применение при решении задач вычислительной геометрии Цепочки Штейнера Случай пересечения Случай касания

Практическое применение инверсии С этой цепочкой связано так называемое утверждение Штейнера (Steiner’s porism): если существует хотя бы одна цепочка Штейнера (т.е. существует соответствующее положение стартовой касающейся окружности, приводящее к цепочке Штейнера), то при любом другом выборе стартовой касающейся окружности также будет получаться цепочка Штейнера, причём число окружностей в ней будет таким же.

Практическое применение инверсии Задача Аполлония Построить окружность, касающуюся трех данных окружностей.

Практическое применение инверсии Применение в технике: прямило Липкина-Поселье

Спасибо за внимание!

Инверсия симметрия относительно окружности

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 931 человек из 80 регионов

Инверсия симметрия относительно окружности

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 702 человека из 75 регионов

Инверсия симметрия относительно окружности

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 333 человека из 72 регионов

Ищем педагогов в команду «Инфоурок»

Инверсия симметрия относительно окружности

Все геометрические преобразования, с которыми нам приходится встречаться, переводят прямые в прямые, а окружности в окружности. Инверсия — это преобразование другого типа, которое также сохраняет класс прямых и окружностей, но может прямую перевести в окружность, а окружность — в прямую. На этом и других замечательных свойствах инверсии основывается ее поразительная эффективность при решении разнообразных геометрических задач.

  • Патрина Вера АлександровнаНаписать 2067 29.03.2018

Номер материала: ДБ-1378258

    29.03.2018 221
    29.03.2018 361
    29.03.2018 423
    29.03.2018 197
    29.03.2018 1319
    29.03.2018 154
    29.03.2018 190
    29.03.2018 128

Не нашли то, что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Инверсия симметрия относительно окружности

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Инверсия симметрия относительно окружности

Детский омбудсмен предложила ужесточить наказание за преступления против детей

Время чтения: 1 минута

Инверсия симметрия относительно окружности

Онлайн-конференция об управлении общеобразовательной организацией

Время чтения: 2 минуты

Инверсия симметрия относительно окружности

Проходной балл ЕГЭ для поступления на бюджет снизился впервые за 10 лет

Время чтения: 3 минуты

Инверсия симметрия относительно окружности

Более половины россиян сталкиваются с конфликтами в родительских чатах

Время чтения: 2 минуты

Инверсия симметрия относительно окружности

Стоимость обучения на первом курсе в вузах РФ за год выросла на 10%

Время чтения: 3 минуты

Инверсия симметрия относительно окружности

В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

🎬 Видео

Инверсия и арбелос АрхимедаСкачать

Инверсия и арбелос Архимеда

8 класс, 9 урок, Осевая и центральная симметрияСкачать

8 класс, 9 урок, Осевая и центральная симметрия

Центральная симметрия. 6 класс.Скачать

Центральная симметрия. 6 класс.

Симметрия относительно точки (центральная симметрия). Пример 2Скачать

Симметрия относительно точки (центральная симметрия). Пример 2

11 класс, 10 урок, Осевая симметрияСкачать

11 класс, 10 урок, Осевая симметрия

№416. Даны две точки А и В, симметричные относительно некоторой прямой, и точка М.Скачать

№416. Даны две точки А и В, симметричные относительно некоторой прямой, и точка М.

Симметрия относительно точки, линии. Математика 6 класс. Подготовка к ЕГЭ, ОГЭ, ЦТ, экзаменуСкачать

Симметрия относительно точки, линии. Математика 6 класс. Подготовка к ЕГЭ, ОГЭ, ЦТ, экзамену

Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)Скачать

Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)

Геометрия, 10 класс | Степень точки относительно окружности. Радикальная ось. Часть 1Скачать

Геометрия, 10 класс | Степень точки относительно окружности. Радикальная ось. Часть 1

Занятие 23 Гомотетия и инверсияСкачать

Занятие 23 Гомотетия и инверсия

48. Осевая и центральная симметрииСкачать

48. Осевая и центральная симметрии

Урок 2 по Эстетической геометрии. Инверсия с КекомСкачать

Урок 2 по Эстетической геометрии. Инверсия с Кеком

Задача №255 [НЕДЕТСКАЯ ГЕОМЕТРИЯ #1]Скачать

Задача №255 [НЕДЕТСКАЯ ГЕОМЕТРИЯ #1]

28 лекция. Симметрия относительно пары точек: некрасивая, но прекрасная часть эстетической геометрииСкачать

28 лекция. Симметрия относительно пары точек: некрасивая, но прекрасная часть эстетической геометрии

Геометрия 10 кл Симметрия в пространствеСкачать

Геометрия 10 кл Симметрия в пространстве

6 класс, 26 урок, СимметрияСкачать

6 класс, 26 урок, Симметрия
Поделиться или сохранить к себе:
Инверсия симметрия относительно окружности