Как обозначается центр и радиус окружности

Окружность

Окружность — геометрическое место точек плоскости, расстояние от которых до центра окружности равно.
Как обозначается центр и радиус окружности

Центр окръжности
Как обозначается центр и радиус окружности

Радиус: расстояние от центра окружности до его границы.
Как обозначается центр и радиус окружности

Диаметр: наибольшее расстояние от одной границы окружности до другой. Диаметр равен двум радиусам.
Как обозначается центр и радиус окружности
$d = 2cdot r$

Периметр (длина окружности): длина границы окружности.
Как обозначается центр и радиус окружности
Длина окружности $= pi cdot$ диаметр $= 2 cdot pi cdot$ радиус
Длина окружности $= pi cdot d = 2 cdot pi cdot r$

$pi$ — pi: число, равное 3,141592. или $approx frac$, то есть отношение $frac<text><text>$ любого окружности.
Как обозначается центр и радиус окружности

Дуга: изогнутая линия, которая является частью окружности.
Как обозначается центр и радиус окружности
Дуги окружности измеряется в градусах или радианах.
Например: 90° или $frac$ — четверть круга,
180° или $pi$ — половина круга.
Сумма всех дуг окружности составляет 360° или $2pi$

Хорда: отрезок прямой, соединяющей две точки на окружности.
Как обозначается центр и радиус окружности

Сектор: похож на часть пирога (клин).
Как обозначается центр и радиус окружности

Касательная к окружности: прямая, перпендикулярна к радиусу, и имеющая ТОЛЬКО одну общую точку с окуржностью.
Как обозначается центр и радиус окружности

Формулы

Длина окружности $=pi cdot text = 2cdot pi cdot text$

Площадь круга $= pi cdot$ радиус 2

Радиус обозначается как r , диаметр как d , длина окружности как P и площадь как S .

Площадь сектора круга

Как обозначается центр и радиус окружности

Площадь сектора круга K : (с центральным углом $theta$ и радиусом $r$).
Если угол $theta$ в градусах, тогда площадь = $frac pi r^2$
Если угол $theta$ в радианах, тогда площадь, тогда площадь = $frac r^2$

Центральный угол

Как обозначается центр и радиус окружности

Если длина дуги составляет $theta$ градуов или радиан, то значение центрального угла также $theta$ (градусов или радиан).

Если вы знаете длину дуги (в дюймах, ярдах, футах, сантиметрах, метрах . ) вы можете найти значение её соответствующего центрального угла ($theta$) по формуле:

Вписанный угол

Вписанный угол это угол с вершиной на окружности и со сторонами, которые содержат хорды окружности.
На рисунке, угол APB это вписанный угол.

Как обозначается центр и радиус окружности

Пример:
$widehat = 84^circ$
$angle APB = frac = 42^circ$

Углы между двумя хордами

Случай 1: два секущие пересекаются внутри окружности.

Как обозначается центр и радиус окружности

Когда две секущие пересекаются внутри окружности, величина образованных угла, в два раза меньше суммы величин дуг, на которые они опираются. На рисунке дуга AB и дуга CD равны 60° и 50° тогда углы 1 и 2 равны $frac(60^circ + 50^circ)=55^circ$

Случай 2: две секущие пересекаются вне окружности.
Как обозначается центр и радиус окружности

Иногда секущие пересекаются за пределами окружности. Когда это случается, величина образующихся углов равна половине разности дуг, на которые они опираются.

$angle ABC =frac(x — y)$

На рисунке дуга AB=80° и дуги CD=30°.
$angle ABC = frac(80 — 30) = frac cdot 50 = 25^circ$

Хорды

Как обозначается центр и радиус окружности
Если две хорды пересекаются внутри окружности, как на рисунке выше, тогда:

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Окружность

Окружность — это геометрическая фигура, образованная замкнутой кривой линией, все точки которой одинаково удалены от одной и той же точки.

Точка, от которой одинаково удалены все точки окружности, называется центром окружности. Центр окружности обычно обозначают большой латинской буквой O:

Как обозначается центр и радиус окружности

Окружность делит плоскость на две области — внутреннюю и внешнюю. Геометрическая фигура, ограниченная окружностью, — это круг:

Как обозначается центр и радиус окружности

Видео:Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)Скачать

Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)

Построение окружности циркулем

Для построения окружности используют специальный прибор — циркуль:

Как обозначается центр и радиус окружности

Установим циркулю произвольный раствор (расстояние между ножками циркуля) и, поставив его ножку с остриём в какую-нибудь точку плоскости (например, на листе бумаги), станем вращать циркуль вокруг этой точки. Другая его ножка, снабжённая карандашом или грифелем, прикасающимся к плоскости, начертит на плоскости замкнутую линию — окружность:

Как обозначается центр и радиус окружности

Видео:Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Радиус, хорда и диаметр

Радиус — это отрезок, соединяющий любую точку окружности с центром. Радиусом также называется расстояние от точки окружности до её центра:

Как обозначается центр и радиус окружности

Все радиусы окружности имеют одну и ту же длину, то есть они равны между собой. Радиус обозначается буквой R или r.

Хорда — это отрезок, соединяющий две точки окружности. Хорда, проходящая через центр, называется диаметром окружности.

Как обозначается центр и радиус окружности

Диаметр обозначается буквой D. Диаметр окружности в два раза больше её радиуса:

Дуга — это часть окружности, ограниченная двумя точками. Любые две точки делят окружность на две дуги:

Как обозначается центр и радиус окружности

Чтобы различать дуги, на которые две точки разделяют окружность, на каждую из дуг ставят дополнительную точку:

Как обозначается центр и радиус окружности

Для обозначения дуг используется символ Как обозначается центр и радиус окружности:

  • Как обозначается центр и радиус окружностиAFB — дуга с концами в точках A и B, содержащая точку F;
  • Как обозначается центр и радиус окружностиAJB — дуга с концами в точках A и B, содержащая точку J.

О хорде, которая соединяет концы дуги, говорят, что она стягивает дугу.

Как обозначается центр и радиус окружности

Хорда AB стягивает дуги Как обозначается центр и радиус окружностиAFB и Как обозначается центр и радиус окружностиAJB.

Видео:Круг. Окружность (центр, радиус, диаметр)Скачать

Круг. Окружность (центр, радиус, диаметр)

Как найти радиус окружности

Как обозначается центр и радиус окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:Радиус Хорда ДиаметрСкачать

Радиус Хорда Диаметр

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Видео:РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?Скачать

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Видео:Окружность. Как найти Радиус и ДиаметрСкачать

Окружность. Как найти Радиус и Диаметр

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

🎬 Видео

Окружность. Круг. 5 класс.Скачать

Окружность. Круг. 5 класс.

9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

Как найти центр круга с помощью подручных средств? ЛЕГКО.Скачать

Как найти центр круга с помощью подручных средств? ЛЕГКО.

Что такое круг окружность радиусСкачать

Что такое круг окружность радиус
Поделиться или сохранить к себе: