Как найти угол лежащий вне окружности

Углы, связанные с окружностью
Как найти угол лежащий вне окружностиВписанные и центральные углы
Как найти угол лежащий вне окружностиУглы, образованные хордами, касательными и секущими
Как найти угол лежащий вне окружностиДоказательства теорем об углах, связанных с окружностью
Содержание
  1. Вписанные и центральные углы
  2. Теоремы о вписанных и центральных углах
  3. Теоремы об углах, образованных хордами, касательными и секущими
  4. Доказательства теорем об углах, связанных с окружностью
  5. Центральные и вписанные углы
  6. Центральный угол и вписанный угол
  7. Свойства центральных и вписанных углов
  8. Примеры решения задач
  9. Теория и практика окружности
  10. Аналогично в каждом отрезке присутствует точка, вне окружности (О).
  11. Задача №1. Дано на рисунке:
  12. Достаточно вспомнить свойства центральных и вписанных углов.
  13. Ответ: 39°
  14. Задача №2. Дано на рисунке:
  15. Найти нужно меньшую дугу BD
  16. Ответ: 100°
  17. Найти меньшую дугу ВС
  18. Ответ: 114°
  19. Задача №4. Дано на рисунке:
  20. Найти отрезок МК
  21. Ответ: МК = 15.
  22. Задача №5. Дано на рисунке:
  23. Попробуй найти подобные треугольники
  24. Ответ: 6
  25. Задача №5. Дано на рисунке:
  26. Без свойства секущей и касательной здесь будет тяжело
  27. Ответ: 12√7.
  28. Я могу долго тебе показывать, как решать задачи, но без твоих усилий ничего не выйдет.
  29. О треугольниках О четырехуголниках
  30. 📸 Видео

Видео:Углы с вершиной внутри и вне окружности.Скачать

Углы с вершиной внутри и вне окружности.

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Как найти угол лежащий вне окружности

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Как найти угол лежащий вне окружности

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:№660. Через точку, лежащую вне окружности, проведены две секущие, образующие угол в 32Скачать

№660. Через точку, лежащую вне окружности, проведены две секущие, образующие угол в 32

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголКак найти угол лежащий вне окружности
Вписанный уголКак найти угол лежащий вне окружностиВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголКак найти угол лежащий вне окружностиВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголКак найти угол лежащий вне окружностиДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголКак найти угол лежащий вне окружностиВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаКак найти угол лежащий вне окружности

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Как найти угол лежащий вне окружности

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Как найти угол лежащий вне окружности

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Как найти угол лежащий вне окружности

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Как найти угол лежащий вне окружности

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Как найти угол лежащий вне окружности

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Как найти угол лежащий вне окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиКак найти угол лежащий вне окружностиКак найти угол лежащий вне окружности
Угол, образованный секущими, которые пересекаются вне кругаКак найти угол лежащий вне окружностиКак найти угол лежащий вне окружности
Угол, образованный касательной и хордой, проходящей через точку касанияКак найти угол лежащий вне окружностиКак найти угол лежащий вне окружности
Угол, образованный касательной и секущейКак найти угол лежащий вне окружностиКак найти угол лежащий вне окружности
Угол, образованный двумя касательными к окружностиКак найти угол лежащий вне окружностиКак найти угол лежащий вне окружности

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Угол, образованный пересекающимися хордами хордами
Как найти угол лежащий вне окружности
Формула: Как найти угол лежащий вне окружности
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Как найти угол лежащий вне окружности

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Как найти угол лежащий вне окружности
Формула: Как найти угол лежащий вне окружности
Угол, образованный касательной и секущей касательной и секущей
Формула: Как найти угол лежащий вне окружности

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Как найти угол лежащий вне окружности

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Угол с вершиной вне кругаСкачать

Угол с вершиной вне круга

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Как найти угол лежащий вне окружности

В этом случае справедливы равенства

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Как найти угол лежащий вне окружности

В этом случае справедливы равенства

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Как найти угол лежащий вне окружности

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Как найти угол лежащий вне окружности

Как найти угол лежащий вне окружности

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Секретная теорема из учебника геометрииСкачать

Секретная теорема из учебника геометрии

Центральные и вписанные углы

Как найти угол лежащий вне окружности

О чем эта статья:

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Как найти угол лежащий вне окружности

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Как найти угол лежащий вне окружности

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Задание 25 ОкружностьСкачать

Задание 25  Окружность

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Как найти угол лежащий вне окружности

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Как найти угол лежащий вне окружности

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Как найти угол лежащий вне окружности

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Как найти угол лежащий вне окружности

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Как найти угол лежащий вне окружности

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Как найти угол лежащий вне окружности

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Как найти угол лежащий вне окружности

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Как найти угол лежащий вне окружности

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Как найти угол лежащий вне окружности

ㄥBAC + ㄥBDC = 180°

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Как найти угол лежащий вне окружности

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Как найти угол лежащий вне окружности

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Как найти угол лежащий вне окружности

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Теория и практика окружности

Как найти угол лежащий вне окружностиСвойство касательных.

Свойства касательных и секущих.

Площадь, сектор, длина окружности.

Задачи на окружности.

По статистике окружности никто не любит, но при этом леденец любим, солнце любим, давай и окружность полюбим!

Окружность − геометрическое место точек плоскости, равноудаленных от одной ее точки (центра). На рисунке центр − точка О.

В окружности может быть проведено 3 типа отрезка:

Как найти угол лежащий вне окружности

Отрезок, проходящий через две точки окружности, но не через центр, называют хордой (AB).

Хорда, проходящая через центр окружности, называется диаметром (самая большая хорда в окружности − диаметр (D)).

Радиус − отрезок, соединяющий центр окружности с точкой на окружности. Диаметр в два раза больше радиуса (R).

А также две прямые снаружи от окружности:

Как найти угол лежащий вне окружности

Касательная имеет одну общую точку с окружностью. Сразу стоит сказать о том, что радиус, проведенный в точку касания, будет иметь с касательной угол 90°.

Секущая пересекает окружность в двух точках, внутри окружности получается хорда или, в частном случае, диаметр.

Теперь чуть-чуть об углах и дугах:

Как найти угол лежащий вне окружности

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее. Он в два раза меньше дуги, на которую опирается.

Центральный угол — это угол, вершина которого находится в центре окружности, равен дуге на которую опирается.

Вписанные углы, опирающиеся на одну дугу, равны между собой (β=β=α/2) и равны половине дуги, на которую опираются.

Градусная мера дуги – величина в °, соответствует центральному углу. Длина дуги равна α.

Как найти угол лежащий вне окружности

А вот такой угол НЕвписанный, такой угол «никто и звать никак».

Можно сделать вывод, что вписанный угол, который опирается на половину дуги окружности, будет прямым, а также будет опираться на диаметр:

Как найти угол лежащий вне окружности

Любая пара углов, опирающихся на одну и ту же хорду, вершина которых находится по разные стороны от хорды, составляет в сумме 180°.

Как найти угол лежащий вне окружности

Запишем основные свойства углов в окружности:

Как найти угол лежащий вне окружности

Нашел что-то общее?

Если угол находится вне окружности, без разницы, чем он получен (касательной или секущей), то найти его можно через половину разности дуг.

Как найти угол лежащий вне окружности

Если угол находится внутри окружности, то находим его через полусумму дуг.

Если есть одна дуга, которая находится на требуемом угле, то угол равен половине этой дуги.

Для любых двух хорд, проходящих через некоторую точку О, выполняет равенство:

Как найти угол лежащий вне окружности

Для любых двух секущих, проходящих через некоторую точку O, выполняется равенство:

Как найти угол лежащий вне окружности

Согласен, что они похожи, особенно если не смотреть на картинки.
Как не перепутать такие равенства? В каждом отрезке должна присутствовать точка, вне окружности (О).

Если из точки, лежащей вне окружности, проведены касательная и секущая:

Как найти угол лежащий вне окружности

Аналогично в каждом отрезке присутствует точка, вне окружности (О).

Если теперь провести две касательные из точки O, то получим такие равные отрезки:

Как найти угол лежащий вне окружности

Касательные равны, как, сообственно, и радиусы!

Площадь и длина окружности находятся по формуле:

Как найти угол лежащий вне окружности

По своему определению число π показывает, во сколько раз длина окружности больше диаметра, отсюда такая формула: L = πD

Если хочешь вывести площадь круга, можешь проинтегрировать длину окружности относительно R или вывести зависимость, как сделал Архимед!

Задача №1. Дано на рисунке:

Как найти угол лежащий вне окружности

Достаточно вспомнить свойства центральных и вписанных углов.

Как найти угол лежащий вне окружности

Ответ: 39°

Задача №2. Дано на рисунке:

Как найти угол лежащий вне окружности

Найти нужно меньшую дугу BD

Как найти угол лежащий вне окружности

Ответ: 100°

Задача №3. Дано на рисунке:

Как найти угол лежащий вне окружности

Найти меньшую дугу ВС

Как найти угол лежащий вне окружности

Ответ: 114°

Задача №4. Дано на рисунке:

Как найти угол лежащий вне окружности

Найти отрезок МК

Как найти угол лежащий вне окружности

Ответ: МК = 15.

Задача №5. Дано на рисунке:

Как найти угол лежащий вне окружности

Попробуй найти подобные треугольники

Как найти угол лежащий вне окружности

Ответ: 6

Задача №5. Дано на рисунке:

Как найти угол лежащий вне окружности

Без свойства секущей и касательной здесь будет тяжело

Как найти угол лежащий вне окружности

Ответ: 12√7.

Я могу долго тебе показывать, как решать задачи, но без твоих усилий ничего не выйдет.

О треугольниках
О четырехуголниках

p.s. Не бойся ошибаться и задавать вопросы!

Если нашел опечатку, или что-то непонятно − напиши.

📸 Видео

Как найти длину дуги окружности центрального угла. Геометрия 8-9 классСкачать

Как найти длину дуги окружности центрального угла. Геометрия 8-9 класс

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углы

Углы, связанные с окружностьюСкачать

Углы, связанные с окружностью

Геометрия Через точку A, лежащую вне окружности, проведены две прямые, одна из которых касаетсяСкачать

Геометрия Через точку A, лежащую вне окружности, проведены две прямые, одна из которых касается

7 класс, 11 урок, Смежные и вертикальные углыСкачать

7 класс, 11 урок, Смежные и вертикальные углы

Вписанный угол в окружность ❤️ #геометрияСкачать

Вписанный угол в окружность ❤️ #геометрия

5 класс, 22 урок, Окружность и кругСкачать

5 класс, 22 урок, Окружность и круг

Решение задач на тему центральные и вписанные углы.Скачать

Решение задач на тему центральные и вписанные углы.

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 классСкачать

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 класс

Окружность. 7 класс.Скачать

Окружность. 7 класс.
Поделиться или сохранить к себе: