Как найти центральный угол окружности если известен вписанный угол

Углы, связанные с окружностью
Как найти центральный угол окружности если известен вписанный уголВписанные и центральные углы
Как найти центральный угол окружности если известен вписанный уголУглы, образованные хордами, касательными и секущими
Как найти центральный угол окружности если известен вписанный уголДоказательства теорем об углах, связанных с окружностью

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Как найти центральный угол окружности если известен вписанный угол

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Как найти центральный угол окружности если известен вписанный угол

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголКак найти центральный угол окружности если известен вписанный угол
Вписанный уголКак найти центральный угол окружности если известен вписанный уголВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголКак найти центральный угол окружности если известен вписанный уголВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголКак найти центральный угол окружности если известен вписанный уголДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголКак найти центральный угол окружности если известен вписанный уголВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаКак найти центральный угол окружности если известен вписанный угол

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Как найти центральный угол окружности если известен вписанный угол

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Как найти центральный угол окружности если известен вписанный угол

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Как найти центральный угол окружности если известен вписанный угол

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Как найти центральный угол окружности если известен вписанный угол

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Как найти центральный угол окружности если известен вписанный угол

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Как найти центральный угол окружности если известен вписанный угол

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиКак найти центральный угол окружности если известен вписанный уголКак найти центральный угол окружности если известен вписанный угол
Угол, образованный секущими, которые пересекаются вне кругаКак найти центральный угол окружности если известен вписанный уголКак найти центральный угол окружности если известен вписанный угол
Угол, образованный касательной и хордой, проходящей через точку касанияКак найти центральный угол окружности если известен вписанный уголКак найти центральный угол окружности если известен вписанный угол
Угол, образованный касательной и секущейКак найти центральный угол окружности если известен вписанный уголКак найти центральный угол окружности если известен вписанный угол
Угол, образованный двумя касательными к окружностиКак найти центральный угол окружности если известен вписанный уголКак найти центральный угол окружности если известен вписанный угол

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Угол, образованный пересекающимися хордами хордами
Как найти центральный угол окружности если известен вписанный угол
Формула: Как найти центральный угол окружности если известен вписанный угол
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Как найти центральный угол окружности если известен вписанный угол

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Как найти центральный угол окружности если известен вписанный угол
Формула: Как найти центральный угол окружности если известен вписанный угол
Угол, образованный касательной и секущей касательной и секущей
Формула: Как найти центральный угол окружности если известен вписанный угол

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Как найти центральный угол окружности если известен вписанный угол

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Как найти центральный угол окружности если известен вписанный угол

В этом случае справедливы равенства

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Как найти центральный угол окружности если известен вписанный угол

В этом случае справедливы равенства

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Как найти центральный угол окружности если известен вписанный угол

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Как найти центральный угол окружности если известен вписанный угол

Как найти центральный угол окружности если известен вписанный угол

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Вписанные и центральные углыСкачать

Вписанные и центральные углы

Центральные и вписанные углы

Как найти центральный угол окружности если известен вписанный угол

О чем эта статья:

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Как найти центральный угол окружности если известен вписанный угол

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Как найти центральный угол окружности если известен вписанный угол

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Как найти центральный угол окружности если известен вписанный угол

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Как найти центральный угол окружности если известен вписанный угол

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Как найти центральный угол окружности если известен вписанный угол

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Как найти центральный угол окружности если известен вписанный угол

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Как найти центральный угол окружности если известен вписанный угол

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Как найти центральный угол окружности если известен вписанный угол

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Как найти центральный угол окружности если известен вписанный угол

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Как найти центральный угол окружности если известен вписанный угол

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Как найти центральный угол окружности если известен вписанный угол

ㄥBAC + ㄥBDC = 180°

Видео:Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Как найти центральный угол окружности если известен вписанный угол

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Как найти центральный угол окружности если известен вписанный угол

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Как найти центральный угол окружности если известен вписанный угол

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. НайдитеСкачать

№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите

Вписанные, центральные углы

Вписанный угол – угол, вершина которого лежит на окружности, а обе стороны пересекают эту окружность.

Центральный угол — угол с вершиной в центре окружности. Центральный угол равен градусной мере дуги, на которую опирается .

Как найти центральный угол окружности если известен вписанный угол

Свойства вписанных углов Как найти центральный угол окружности если известен вписанный угол

Чтобы не потерять страничку, вы можете сохранить ее у себя:

В задаче 11 заметила опечатку Центральным углом для вписанного угла АВС является угол АОС. Будем искать его градусную меру, после чего лишь придется умножить результат на 2, — получим градусную меру угла АВС. Наверное, надо не умножить . а разделить. И хотела поблагодарить Вас за такой сайт. Вы просто молодец. всё очень понятно и доступно.

в задаче 11 на картинке угол АВС равен 106 , а в условии 104 .

Арина, спасибо! Исправлено.

В свойствах вписанных углов небольшая синтаксическая ошибка.
“Угол, опирающийся на диаметр – прямой”. (перед тире запятая не ставится).

Почему в 7-ой задаче angle ADC=120^, так как является смежным с angle BDA. При этом angle BDA=60^, так как опирается на дугу ВА. Тогда разве угол ADC не должен быть равен 60 градусам?

Как же угол ADC будет равен 60°, если он смежен с углом в 60°?

Благодарю вас за такой сайт,очень мне помог, и сделайте пожайлуста ещё одну задачу :Вписанный угол ABC=58гр.Найти хорду на которую опирается этот угол(заранее спасибо)

Даниил, с условием не все в порядке. Не хватает данных. Или радиус должен быть известен или еще что…

В шестой задаче угол BAD разве не будет равен 65? Угол B прямой те опирается на диаметр
Д – 25
180 – 115= 65
Можно ли так?

Угол B не прямой, он не опирается на диаметр!

📸 Видео

ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ . §9 геометрия 8 классСкачать

ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ . §9 геометрия 8 класс

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Окружность на ОГЭ. Центральные и вписанные углыСкачать

Окружность на ОГЭ. Центральные и вписанные углы

Центральные и вписанные углы - геометрия 8 классСкачать

Центральные и вписанные углы - геометрия 8 класс

Решение задач на тему центральные и вписанные углы.Скачать

Решение задач на тему центральные и вписанные углы.

Центральные и вписанные углы. Геометрия 8клСкачать

Центральные и вписанные углы. Геометрия 8кл

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

Окружность: касательная, центральный и вписанный уголСкачать

Окружность: касательная, центральный и вписанный угол

Дуга. Центральный угол. Вписанный угол.Скачать

Дуга.  Центральный угол.  Вписанный угол.

Геометрия. Теорема о вписанном углеСкачать

Геометрия. Теорема о вписанном угле

8 класс. Решаем задачи на центральные и вписанные углы | Часть 1Скачать

8 класс. Решаем задачи на центральные и вписанные углы |  Часть 1
Поделиться или сохранить к себе: