Даны две окружности, каждая определена координатами своего центра и радиусом. Требуется найти все их точки пересечения (либо одна, либо две, либо ни одной точки, либо окружности совпадают).
Видео:Параметр. Серия 13. Решение задач с окружностями. Касание двух окружностейСкачать
Решение
Предположим, не теряя общности, что центр первой окружности — в начале координат (если это не так, то перенесём центр в начало координат, а при выводе ответа будем обратно прибавлять координаты центра). Тогда мы имеем систему двух уравнений:
Вычтем из второго уравнения первое, чтобы избавиться от квадратов переменных:
Таким образом, мы свели задачу о пересечении двух окружностей к задаче о пересечении первой окружности и следующей прямой:
А решение последней задачи описано в соответствующей статье.
Единственный вырожденный случай, который надо рассмотреть отдельно — когда центры окружностей совпадают. Действительно, в этом случае вместо уравнения прямой мы получим уравнение вида 0 = С, где C — некоторое число, и этот случай будет обрабатываться некорректно. Поэтому этот случай нужно рассмотреть отдельно: если радиусы окружностей совпадают, то ответ — бесконечность, иначе — точек пересечения нет.
Видео:Алгоритмы. Пересечение окружностейСкачать
Как найти точки пересечения окружностей с параметром
Покажем, как задачи с параметрами можно решать графически.
Найдём количество решений уравнения
в зависимости от $$ a$$.
Искомое количество решений совпадает с числом точек пересечения графиков функций
График первой функции получается из графика функции, который был построен в предыдущем примере. Для этого нужно воспользоваться преобразованием вида ПР1 то есть график $$ y=_left(xright)$$ имеет такой вид, как показано на рис. 43 $$ fleft(0right)=sqrt$$.
Графиком функции $$ y=a$$ будет прямая, параллельная оси $$ Ox$$ (рис. 43). При этом она пересекает ось ординат в точке $$ (0,a)$$. Легко видеть, что при $$a 3$$ прямая $$ y=a$$ не имеет пересечений с графиком $$ y=_left(xright)$$, при $$ a=3$$ и $$ ain [0;sqrt)$$ есть две точки пересечения, а при $$ ain [sqrt;3)$$ – четыре общие точки и при $$ a=sqrt$$ – три общие точки. Остаётся лишь сформулировать ответ.
При $$ ain (-infty ;0)bigcup (3;+infty )$$ решений нет, при $$ ain [0;sqrt)bigcup left$$ – два решения, при $$ ain left<sqrtright>$$ – три решения, при $$ ain (sqrt;3)$$ – четыре решения.
Найдём количество решений уравнения в зависимости от $$ a$$:
Методом интервалов нетрудно построить график функции
Количество решений уравнения совпадает с числом точек пересечения этого графика с прямой $$ fleft(xright)=a$$ (рис. 44).
Проанализировав график, несложно выписать ответ.
При $$ ain (8;+infty )$$ уравнение имеет 2 решения, при $$ a=8$$ уравнение имеет бесконечно много решений, при $$ ain (-infty ;8)$$ решений нет.
Рассмотрим ещё один пример задач с параметром, где используется построение множеств, задаваемых уравнениями с модулем. Напомним, что графиком уравнения называют линию на плоскости, на которой лежат те и только те точки, координаты которых удовлетворяют этому уравнению.
Найдём количество решений системы уравнений
в зависимости от $$ a$$.
Для решения необходимо построить график уравнения $$ left|xright|+left|yright|=4$$. Это можно сделать, последовательно выполнив построения таких графиков:
График второго уравнения – окружность с центром в точке $$ O(0;0)$$ и радиусом $$ left|aright|$$. Изобразим оба этих графика на координатной плоскости $$ xOy$$.
Как видим, при $$|a| 4$$ графики не пересекаются. При $$ left|aright|=2sqrt$$ или $$ left|aright|=4$$ есть 4 точки пересечения. При остальных $$ a$$ есть 8 точек пересечения. Таким образом, можно сформулировать ответ.
При $$ ain (-infty ;-4)cup (-2sqrt;2sqrt)cup (4;+infty )$$ система не имеет решений;
при $$ ain <-4;-2sqrt;2sqrt;4>$$ система имеет 4 решения;
при $$ ain (-4;-2sqrt)cup (2sqrt;4)$$ система имеет 8 решений.
В следующей задаче нам потребуется понятие локального экстремума функции. Говорят, что функция $$ y=fleft(xright)$$ имеет локальный максимум в точке $$ _$$, если для некоторого числа $$ε > 0$$ при $$|x − x_0| 0$$ при $$|x − x_0| 0$$ график $$ y=at-3$$ касается линии $$ y=sqrt$$ (cм. рис. 46). Уравнение $$ D=0$$ имеет единственный положительный корень `a=1/4`. Следовательно, `a_2=1/4`. Если $$dfrac3leq a 1/4` они не имеют общих точек.
Рассмотрим пример использования этого правила в задаче.
Найдём все значения параметра $$ a$$, при которых система
имеет хотя бы одно решение.
Неравенство системы после выделения полных квадратов можно записать в виде $$ ^-8left|xright|+16+^-8left|yright|+16le 1$$ или $$ left(right|x|-4^+(left|yright|-4^le 1$$. Множество $$ E$$ решений этого неравенства – объединение кругов $$ _$$, $$ _$$, $$ _$$, $$ _$$ (вместе с их границами) радиуса $$ 1$$ (см. рис. 47) с центрами $$ _(4;4)$$, $$ _(4;-4)$$, $$ _(-4;-4)$$, $$ _(-4;4)$$. Запишем уравнение системы в виде
Это уравнение задаёт окружность $$ L$$ радиуса $$ left|aright|$$ с центром в точке $$ M(0;1)$$, или точку $$ (0;1)$$ при $$ a=0$$. Исходная система имеет хотя бы одно решение при тех значениях $$ a$$, при которых окружность $$ L$$ имеет общие точки с множеством $$ E$$. При этом ввиду симметричного расположения соответствующих пар кругов относительно оси ординат достаточно выяснить, при каких значениях $$ a$$ окружность $$ L$$ имеет общие точки с кругами, центрами которых являются точки $$ _$$ и $$ _$$. Проведём из точки $$ M$$ лучи $$ _$$ и $$ _$$ в направлении точек $$ _$$ и $$ _$$. Пусть $$ _$$ и $$ _$$ – точки пересечения $$ _$$ и окружности с центром $$ _$$, $$ _$$ и $$ _$$ – точки пересечения $$ _$$ и окружности с центром $$ _$$. Тогда из геометрических соображений имеем:
При $$ 4le left|aright|le 6$$ окружность с центром $$ M$$ имеет общие точки с кругом $$ _$$ , а при $$ sqrt-1le left|aright|le sqrt+1$$ – с кругом $$ _$$.
а) Если $$b 0$$. Эта система не имеет решений при $$ a=0$$ и поэтому $$b 0$$. Теперь мы прибегнем к графическому методу. Рассмотрим два случая: $$0 1$$. Если $$b > 1$$, то $$sqrt Эта система не имеет решений, так как прямая $$ y=x-b$$ не пересекает график функции $$ y=|^-b|$$ (см. рис. 48). Если $$0 0$$).
В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости.
Найдём все значения `a`, при каждом из которых уравнение
Рассмотрим функции `f(x)-a|x-3|` и `g(x)=5/(x+2)`.
Если построить график функции `f(x)` для разных `a` (рис. 50) и график функции `g(x)` (рис. 51), то можно без проблем исследовать на промежутке `[0;+oo)` уравнение `f(x)=g(x)`.
При `a При `a>0` функция `f(x)` возрастает на промежутке `(3;+oo)`. Функция `g(x)` убывает на этом промежутке, поэтому уравнение `f(x)=g(x)` всегда имеет ровно одно решение на промежутке `(3;+oo)`, поскольку `f(3) g(3+1/a)`. На промежутке `[0;3]` уравнение `f(x)=g(x)` принимает вид `3a-ax=5/(x+2)`. Это уравнение сводится к уравнению `ax^2-ax+(5-6a)=0`. Будем считать, что `a>0`, поскольку случай `a
Пусть уравнение имеет два корня, то есть `a>4/5`. Тогда оба корня меньше `3`, поскольку при `x>=3` значения функции `3a-ax` неположительны, а значения функции `5/(x+2)` положительны. По теореме Виета сумма корней равна `1`, а произведение равно `5/6-6`. Значит, больший корень всегда принадлежит промежутку `[0;3]`, а меньший принадлежит этому промежутку тогда и только тогда, когда `5/a-6>=0`, то есть `a 5/6`;
– три корня при `4/5
В завершении разберём несколько задач с параметрами, которые удобно решать методом областей на координатной плоскости. В следующем примере будем использовать известный подход к задачам, содержащим некоторые переменные в квадрате. Суть этого подхода — рассмотрение выражения как квадратичной функции относительно какой-нибудь переменной (остальные переменные при этом считаются параметрами) с последующим использованием известных свойств квадратичной функции.
Найдём все значения параметра $$ a$$, при каждом из которых система уравнений
имеет ровно три решения.
Первое уравнение данной системы равносильно совокупности двух уравнений $$ |y+9|+|x+2|=2$$ и $$ ^+^=3$$. Первое из них задаёт квадрат $$ G$$ с центром $$ (-2;-9)$$, диагонали которого равны $$ 4$$ и параллельны осям координат. Второе задаёт окружность $$ S$$ с центром $$ (0;0)$$ радиуса $$ sqrt$$ (см. рис. 52).
Второе уравнение исходной системы при $$a > 0$$ задаёт окружность $$ Omega $$ с центром $$ (-2;-4)$$ радиуса $$ R=sqrt$$.
Отметим, что при $$a Рассмотрев случаи внешнего и внутреннего касания окружностей $$ Omega $$ и $$ S$$, можно заключить, что они имеют ровно `1` общую точку при $$ R=sqrtpm sqrt$$, ровно `2` общие точки при $$ Rin (sqrt-sqrt;sqrt+sqrt)$$ и ни одной общей точки при остальных $$ R$$. Поскольку центры окружности $$ Omega $$ и квадрата $$ G$$ лежат на прямой $$ x=-2$$, то $$ Omega $$ и $$ G$$ имеют ровно `1` общую точку при $$ R=3$$ или $$ R=7$$, ровно `2` общие точки при $$ Rin (3;7)$$ и ни одной общей точки при остальных значениях $$ R$$. Для того чтобы у системы было 3 решения, необходимо и достаточно, чтобы окружность $$ Omega $$ имела `2` общие точки с квадратом $$ G$$ и `1` общую точку с окружностью $$ S$$ или наоборот. Рассмотрим значения $$ R$$, при которых окружность $$ Omega $$ имеет с квадратом $$ G$$ или окружностью $$ S$$ ровно `1` общую точку.
1) $$ R=sqrt+sqrt$$. Тогда есть ровно `1` общая точка с окружностью $$ S$$, и ровно `2` общие точки с квадратом $$ G$$ (т. к. $$3 sqrt + sqrt$$), т. е. у системы 1 решение.
Итак, подходят $$ R=3$$ и $$ R=sqrt+sqrt$$. Тогда искомые значения параметра $$ a=^=9$$ и $$ a=(sqrt+sqrt^=23+4sqrt$$.
Видео:#13. Задача с параметром: уравнение окружности!Скачать
Графический метод решения задач с параметрами
Теперь вы узнали, что такое параметр, и увидели решение самых простых задач.
Но подождите — рано успокаиваться и говорить, что вы все знаете. Есть множество типов задач с параметрами и приемов их решения. Чтобы чувствовать себя уверенно, мало посмотреть решения трех незатейливых задач.
Вот список тем, которые стоит повторить:
1. Элементарные функции и их графики. Парабола, синус, логарифм, арктангенс и все остальные — всех их надо знать «в лицо».
Только после этого можно переходить к самому простому и наглядному способу решения задач с параметрами — графическому. Конечно, он не единственный. Но начинать лучше всего именно с него.
Мы разберем несколько самых простых задач, решаемых графическим методом. Больше задач — в видеокурсе «Графический метод решения задач с параметрами» (бесплатно).
1. При каких значениях параметра a уравнение имеет ровно 2 различных решения?
Дробь равна нулю тогда и только тогда, когда ее числитель равен нулю, а знаменатель не равен нулю.
В первом уравнении выделим полный квадрат:
Это уравнение окружности с центром в точке и радиусом равным 2. Обратите внимание — графики будем строить в координатах х; а.
Уравнение задает прямую, проходящую через начало координат. Нам нужны ординаты точек, лежащих на окружности и не лежащих на этой прямой.
Для того чтобы точка лежала на окружности, ее ордината а должна быть не меньше 0 и не больше 4.
Кроме того, точка не должна лежать на прямой , которая пересекает окружность в точках и Координаты этих точек легко найти, подставим в уравнение окружности.
Точка С также не подходит нам, поскольку при мы получим единственную точку, лежащую на окружности, и единственное решение уравнения.
2. Найдите все значения a, при которых уравнение имеет единственное решение.
Уравнение равносильно системе:
Мы возвели обе части уравнения в квадрат при условии, что (смотри тему «Иррациональные уравнения»).
Раскроем скобки в правой части уравнения, применяя формулу квадрата трехчлена. Получаем систему.
Приводим подобные слагаемые в уравнении.
Заметим, что при прибавлении к правой и левой части числа 49 можно выделить полные квадраты:
Решим систему графически:
Уравнение задает окружность с центром в точке , где радиус
Неравенство задает полуплоскость, которая расположена выше прямой , вместе с самой этой прямой.
Исходное уравнение имеет единственное решение, если окружность имеет единственную общую точку с полуплоскостью. Другими словами, окружность касается прямой, заданной уравнением
Пусть С — точка касания.
На координатной плоскости отметим точки и , в которых прямая пересекает оси Y и Х.
Рассмотрим треугольник ABP. Он прямоугольный, и радиус окружности PC является медианой этого треугольника. Значит по свойству медианы прямоугольного треугольника, проведенной к гипотенузе.
Из треугольника ABP найдем длину гипотенузы AB по теореме Пифагора.
Решая это уравнение, получаем, что
3. Найдите все положительные значения параметра а, при каждом из которых система имеет единственное решение.
График уравнения — окружность с центром и радиусом равным 2.
График уравнения — две симметричные окружности и радиуса 2 c центрами в точках и
Второе уравнение при задает окружность с центром в точке и радиусом a.
Вот такая картинка, похожая на злую птицу. Или на хрюшку. Кому что нравится.
Система имеет единственное решение в случаях, когда окружность , задаваемая вторым уравнением, касается только левой окружности или только правой
Если a — радиус окружности , то это значит, что (только правая) или (только левая).
Пусть А — точка касания окружности и окружности
, (как гипотенуза прямоугольного треугольника МNР с катетами 3 и 4),
В — точка касания окружности и окружности
длину MQ найдем как гипотенузу прямоугольного треугольника KMQ с катетами 7 и 4; Тогда для точки В получим:
Есть еще точки С и D, в которых окружность касается окружности или окружности соответственно. Однако эти точки нам не подходят. В самом деле, для точки С:
, но и это значит, что окружность с центром в точке М, проходящая через точку С, будет пересекать левую окружность и система будет иметь не одно, а три решения.
Аналогично, для точки D:
и значит, окружность с центром М, проходящая через точку D, будет пересекать правую окружность и система будет иметь три решения.
4. При каких значениях a система уравнений имеет 4 решения?
Конечно же, решаем графически. Только непуганый безумец возьмется решать такую систему аналитически : -)
И в первом, и во втором уравнении системы уже можно разглядеть известные «базовые элементы» (ссылка) — в первом ромбик, во втором окружность. Видите их? Как, еще нет? — Сейчас увидите!
Просто выделили полный квадрат во втором уравнении.
Сделаем замену Система примет вид:
Вот теперь все видно! Рисовать будем в координатах
Графиком первого уравнения является ромб, проходящий через точки с координатами и
Графиком второго уравнения является окружность с радиусом и центром в начале координат.
Когда же система имеет ровно 4 решения?
1) В случае, когда окружность вписана в ромб, то есть касается всех сторон ромба.
Запишем площадь ромба двумя способами — как произведение диагоналей пополам и как произведение стороны на высоту, проведенную к этой стороне.
Диагонали нашего ромба равны 8 и 6. Значит,
Сторону ромба найдем по теореме Пифагора. Видите на рисунке прямоугольный треугольник со катетами 3 и 4? Да, это египетский треугольник, и его гипотенуза, то есть сторона ромба, равна 5. Если h — высота ромба, то
При этом Мы помним, что если окружность вписана в ромб, то диаметр этой окружности равен высоте ромба. Отсюда
Мы получили ответ:
2) Есть второй случай, и мы его найдем.
Давайте посмотрим — если уменьшить радиус окружности, сделав , окружность будет лежать внутри ромба, не касаясь его сторон. Система не будет иметь решений, и нам это не подходит.
Пусть радиус окружности больше, чем , но меньше 3. Окружность дважды пересекает каждую из четырех сторон ромба, и система имеет целых 8 решений. Опять не то.
Пусть радиус окружности равен 3. Тогда система имеет 6 решений.
А что, если ? Окружность пересекает каждую сторону ромба ровно 1 раз, всего 4 решения. Подходит!
Значит, Объединим случаи и запишем ответ:
Больше задач и методов решения — на онлайн-курсе Анны Малковой. И на интенсивах ЕГЭ-Студии в Москве.
📺 Видео
✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать
Взаимное расположение окружностей. Точки пересечения окружностейСкачать
Теорема о числе точек пересечения двух окружностейСкачать
Параметр. Серия 14. Решение задач с окружностями. Касание окружности и гиперболыСкачать
#14. Мощное задание с параметром! Метод областей на плоскостиСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Параметр. Серия 12. Решение задач с окружностями. Касание окружности и прямойСкачать
Система уравнений с параметром | Графический и аналитический способ | Параметр№8 | ЕГЭ по математикеСкачать
Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать
Определение точки пересечения окружности с прямойСкачать
Взаимное расположение и точки пересечения прямой и окружностиСкачать
Пересечение двух окружностейСкачать
Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Графический методСкачать
#17. Плавающий центр окружности — красивая задача с параметром!Скачать
(8) ПАРАМЕТР графически. Пересечения прямых. Задачи с ЕГЭ-2016Скачать
Взаимное расположение окружности и прямой. 7 класс.Скачать
5-часовой стрим по ПАРАМЕТРАМ. Вся алгебра для №17 с нуля и до уровня ЕГЭ 2023Скачать