Как найти стороны трапеции если вписана окружность

Узнать ещё

Знание — сила. Познавательная информация

Содержание
  1. В трапецию вписана окружность
  2. Трапеция. Формулы, признаки и свойства трапеции
  3. Основные свойства трапеции
  4. Сторона трапеции
  5. Формулы определения длин сторон трапеции:
  6. Средняя линия трапеции
  7. Формулы определения длины средней линии трапеции:
  8. Высота трапеции
  9. Формулы определения длины высоты трапеции:
  10. Диагонали трапеции
  11. Формулы определения длины диагоналей трапеции:
  12. Площадь трапеции
  13. Формулы определения площади трапеции:
  14. Периметр трапеции
  15. Формула определения периметра трапеции:
  16. Окружность описанная вокруг трапеции
  17. Формула определения радиуса описанной вокруг трапеции окружности:
  18. Окружность вписанная в трапецию
  19. Формула определения радиуса вписанной в трапецию окружности
  20. Другие отрезки разносторонней трапеции
  21. Формулы определения длин отрезков проходящих через трапецию:
  22. Трапеция. Свойства трапеции
  23. Свойства трапеции
  24. Свойства и признаки равнобедренной трапеции
  25. Вписанная окружность
  26. Площадь
  27. 🎦 Видео

Видео:Трапеция, вписанная в окружностьСкачать

Трапеция, вписанная в окружность

В трапецию вписана окружность

Если в трапецию вписана окружность, в задаче появляется несколько путей, по которым можно повести рассуждение.

1.В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны. Отсюда следует, что если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон.

Как найти стороны трапеции если вписана окружность

AB+CD=AD+BC

2. Отрезки касательных, проведенных из одной точки, равны. Отсюда следует, что

Как найти стороны трапеции если вписана окружность

AL=AK

BL=BM

CM=CF

DF=DK

3. Высота трапеции равна длине диаметра вписанной окружности или двум ее радиусам.

Как найти стороны трапеции если вписана окружность

MK — высота трапеции, MK=2r, где r — радиус вписанной в трапецию окружности.

4. Центр вписанной окружности является точкой пересечения биссектрис углов трапеции.

Как найти стороны трапеции если вписана окружность

Рассмотрим базовую задачу.

Найти радиус вписанной в трапецию окружности, если точка касания делит боковую сторону на отрезки длиной m и n (CF=m, FD=n).

1) ∠ADC+∠BCD=180º (как сумма внутренних односторонних углов при параллельных прямых AD и BC и секущей CD);

2) так как точка O — точка пересечения биссектрис углов трапеции, то ∠ODF+∠OCF=1/2∙(∠ADC+∠BCD)=90º;

3) так как сумма углов треугольника равна 180º, то в треугольнике COD ∠COD=90º;

4) таким образом, треугольник COD прямоугольный, а OF — высота, проведенная к гипотенузе, CF и FD — проекции катета OC и OD на гипотенузу. Поскольку высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу,

Как найти стороны трапеции если вписана окружность

Отсюда радиус вписанной в трапецию окружности выражается через длины отрезков, как которые боковая сторона делится точкой касания, как

Как найти стороны трапеции если вписана окружность

А так как высота трапеции равна ее диаметру, то и высоту трапеции можно выразить через длины этих отрезков:

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Как найти стороны трапеции если вписана окружностьКак найти стороны трапеции если вписана окружность
Рис.1Рис.2

Видео:Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основанияСкачать

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основания

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

m =a + b
2

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Видео:Как найти стороны равнобокой трапеции, описанной около трёх попарно касающихся равных окружностей?Скачать

Как найти стороны равнобокой трапеции, описанной около трёх попарно касающихся равных окружностей?

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a — h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a — c· cos α — d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с =hd =h
sin αsin β

Видео:Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.Скачать

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

m =a + b
2

2. Формула определения длины средней линии через площадь и высоту:

m =S
h

Видео:Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
a + ba + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
2 m2 m

4. Формула высоты трапеции через площадь и длины оснований:

h =2S
a + b

5. Формула высоты трапеции через площадь и длину средней линии:

h =S
m

Видео:Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 — 2 ad· cos β

d 2 = √ a 2 + c 2 — 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 =d 2 + ab —a ( d 2 — c 2 )
a — b
d 2 =c 2 + ab —a ( c 2 — d 2 )
a — b

d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab — d 2 2

d 2 = √ c 2 + d 2 + 2 ab — d 1 2

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

S =( a + b )· h
2

3. Формула площади через диагонали и угол между ними:

S =d 1 d 2· sin γ=d 1 d 2· sin δ
22

4. Формула площади через четыре стороны:

S =a + bc 2 —(( a — b ) 2 + c 2 — d 2)2
22( a — b )

5. Формула Герона для трапеции

S =a + b√ ( p — a )( p — b )( p — a — c )( p — a — d )
| a — b |

где

p =a + b + c + d— полупериметр трапеции.
2

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Видео:Окружность, вписанная в трапециюСкачать

Окружность, вписанная в трапецию

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

p =a + c + d 1
2

a — большее основание

Видео:Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторонуСкачать

Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторону

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

r =h
2

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL =bKN = ML =aTO = OQ =a · b
22a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Как найти стороны трапеции если вписана окружность

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Как найти стороны трапеции если вписана окружность

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Как найти стороны трапеции если вписана окружность

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Как найти стороны трапеции если вписана окружность

Видео:Задание 24 ОГЭ по математике #4Скачать

Задание 24 ОГЭ по математике #4

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Как найти стороны трапеции если вписана окружность

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Как найти стороны трапеции если вписана окружность

3. Треугольники Как найти стороны трапеции если вписана окружностьи Как найти стороны трапеции если вписана окружность, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Как найти стороны трапеции если вписана окружность

Отношение площадей этих треугольников есть Как найти стороны трапеции если вписана окружность.

Как найти стороны трапеции если вписана окружность

4. Треугольники Как найти стороны трапеции если вписана окружностьи Как найти стороны трапеции если вписана окружность, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Как найти стороны трапеции если вписана окружность

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Как найти стороны трапеции если вписана окружность

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Как найти стороны трапеции если вписана окружность

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Как найти стороны трапеции если вписана окружность

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Как найти стороны трапеции если вписана окружность

Видео:Трапеция вписана в окружность. Найти радиус окружностиСкачать

Трапеция вписана в окружность.  Найти радиус окружности

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Как найти стороны трапеции если вписана окружность

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Как найти стороны трапеции если вписана окружность

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Как найти стороны трапеции если вписана окружность

Видео:Геометрия В прямоугольную трапецию вписана окружность. Найдите её радиус, если основания трапецииСкачать

Геометрия В прямоугольную трапецию вписана окружность. Найдите её радиус, если основания трапеции

Вписанная окружность

Если в трапецию вписана окружность с радиусом Как найти стороны трапеции если вписана окружностьи она делит боковую сторону точкой касания на два отрезка — Как найти стороны трапеции если вписана окружностьи Как найти стороны трапеции если вписана окружность, то Как найти стороны трапеции если вписана окружность

Как найти стороны трапеции если вписана окружность

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Площадь

Как найти стороны трапеции если вписана окружностьили Как найти стороны трапеции если вписана окружностьгде Как найти стороны трапеции если вписана окружность– средняя линия

Как найти стороны трапеции если вписана окружность

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

🎦 Видео

Геометрия В равнобокую трапеция вписана окружность Одна из ее боковых сторон точкой касания делитсяСкачать

Геометрия В равнобокую трапеция вписана окружность Одна из ее боковых сторон точкой касания делится

Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

найти сторону четырехугольника, в который вписана окружностьСкачать

найти сторону четырехугольника, в который вписана окружность
Поделиться или сохранить к себе: