|  |  | 
| Рис.1 | Рис.2 | 
- Признаки ромба
- Основные свойства ромба
- Сторона ромба
- Формулы определения длины стороны ромба:
- Диагонали ромба
- Формулы определения длины диагонали ромба:
- Периметр ромба
- Формула определения длины периметра ромба:
- Площадь ромба
- Формулы определения площади ромба:
- Окружность вписанная в ромб
- Формулы определения радиуса круга вписанного в ромб:
- Вписанная в ромб окружность
- Радиус и сторона ромба
- Свойства
- 🔥 Видео
Видео:Задача 6 №27914 ЕГЭ по математике. Урок 132Скачать

Признаки ромба
∠BAC = ∠CAD или ∠BDA = ∠BDC
Δ ABO = Δ BCO = Δ CDO = Δ ADO
Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

Основные свойства ромба
∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC
AC 2 + BD 2 = 4AB 2
Видео:№493. Найдите сторону и площадь ромба, если его диагонали равны 10 см и 24 см.Скачать

Сторона ромба
Формулы определения длины стороны ромба:
1. Формула стороны ромба через площадь и высоту:
| a = | S | 
| ha | 
2. Формула стороны ромба через площадь и синус угла:
| a = | √ S | 
| √ sinα | 
| a = | √ S | 
| √ sinβ | 
3. Формула стороны ромба через площадь и радиус вписанной окружности:
| a = | S | 
| 2 r | 
4. Формула стороны ромба через две диагонали:
| a = | √ d 1 2 + d 2 2 | 
| 2 | 
5. Формула стороны ромба через диагональ и косинус острого угла ( cos α ) или косинус тупого угла ( cos β ):
| a = | d 1 | 
| √ 2 + 2 cosα | 
| a = | d 2 | 
| √ 2 — 2 cosβ | 
6. Формула стороны ромба через большую диагональ и половинный угол:
| a = | d 1 | 
| 2 cos ( α /2) | 
| a = | d 1 | 
| 2 sin ( β /2) | 
7. Формула стороны ромба через малую диагональ и половинный угол:
| a = | d 2 | 
| 2 cos ( β /2) | 
| a = | d 2 | 
| 2 sin ( α /2) | 
8. Формула стороны ромба через периметр:
| a = | Р | 
| 4 | 
Видео:Если в четырёхугольник можно вписать окружностьСкачать

Диагонали ромба
Формулы определения длины диагонали ромба:
d 1 = a √ 2 + 2 · cosα
d 1 = a √ 2 — 2 · cosβ
d 2 = a √ 2 + 2 · cosβ
d 2 = a √ 2 — 2 · cosα
d 1 = 2 a · cos ( α /2)
d 1 = 2 a · sin ( β /2)
d 2 = 2 a · sin ( α /2)
d 2 = 2 a · cos ( β /2)
7. Формулы диагоналей через площадь и другую диагональ:
| d 1 = | 2S | 
| d 2 | 
| d 2 = | 2S | 
| d 1 | 
8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:
| d 1 = | 2 r | 
| sin ( α /2) | 
| d 2 = | 2 r | 
| sin ( β /2) | 
Видео:Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

Периметр ромба
Периметром ромба называется сумма длин всех сторон ромба.
Длину стороны ромба можно найти за формулами указанными выше.
Формула определения длины периметра ромба:
Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Площадь ромба
Формулы определения площади ромба:
4. Формула площади ромба через две диагонали:
| S = | 1 | d 1 d 2 | 
| 2 | 
5. Формула площади ромба через синус угла и радиус вписанной окружности:
| S = | 4 r 2 | 
| sinα | 
6. Формулы площади через большую диагональ и тангенс острого угла ( tgα ) или малую диагональ и тангенс тупого угла ( tgβ ):
| S = | 1 | d 1 2 · tg ( α /2) | 
| 2 | 
| S = | 1 | d 2 2 · tg ( β /2) | 
| 2 | 
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Окружность вписанная в ромб
Формулы определения радиуса круга вписанного в ромб:
1. Формула радиуса круга вписанного в ромб через высоту ромба:
| r = | h | 
| 2 | 
2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:
| r = | S | 
| 2 a | 
3. Формула радиуса круга вписанного в ромб через площадь и синус угла:
| r = | √ S · sinα | 
| 2 | 
4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:
| r = | a · sinα | 
| 2 | 
| r = | a · sinβ | 
| 2 | 
5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:
| r = | d 1 · sin ( α /2) | 
| 2 | 
| r = | d 2 · sin ( β /2) | 
| 2 | 
6. Формула радиуса круга вписанного в ромб через две диагонали:
| r = | d 1 · d 2 | 
| 2√ d 1 2 + d 2 2 | 
7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:
| r = | d 1 · d 2 | 
| 4 a | 
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool. 
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:Как найти сторону квадрата в который вписаны 2 окружностиСкачать

Вписанная в ромб окружность
Какими свойствами обладает вписанная в ромб окружность? Как найти её радиус?

Радиус вписанной в ромб окружности можно найти по общей формуле
где S — площадь ромба, p — его полупериметр.
Так как полупериметр ромба равен p=2a, где a — сторона ромба, эту формулу можно записать как
С учётом формул для нахождения площади ромба:
где α — угол ромба (причем α может быть как острым, так и тупым).
где d1и d2 — диагонали ромба.
Таким образом, еще две формулы радиуса вписанной в ромб окружности:
Так как диаметр вписанной окружности равен высоте ромба, радиус равен половине высоты ромба:

Так как диагонали ромба взаимно перпендикулярны и радиус, проведённый в точку касания, перпендикулярен стороне, то по свойству высоты прямоугольного треугольника из треугольника AOD имеем
Следовательно, радиус вписанной в ромб окружности есть среднее пропорциональное между отрезками, на которые делит сторону точка касания:
Видео:В четырехугольник ABCD вписана окружность, AB = 10, BC = 11 и CD = 15. Найдите четвертую сторону.Скачать

Радиус и сторона ромба
Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Свойства
В ромбе радиус вписанной окружности связан непосредственно со стороной через синус угла α. Сам радиус по определению представляет собой половину высоты ромба, которая равна стороне ромба, умноженной на синус угла α из образованного прямоугольного треугольника. (рис.115.1) sinα=2r/a
Высота в таком случае получается равна двум радиусам, а площадь- двум радиусам, умноженным на сторону ромба. h=2r S=2ar
Периметр ромба остается неизменно равным четырем его сторонам. P=4a
Угол β можно найти через полученный синус, который дает два значения – острого угла α, и тупого угла α+90˚. Диагонали ромба рассчитываются по теореме косинусов из равнобедренных треугольников, как квадратный корень из удвоенной суммы или разности (в зависимости от угла, противолежащего диагонали) квадрата стороны и его произведения на косинус угла. d_1=√(2(a^2-cosα ) ) d_1=√(2(a^2+cosα))
🔥 Видео
Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Площадь ромба. Легче понять...Скачать

17 задание ЕГЭ математика профильСкачать

Радиус вписанной в ромб окружности (6701)Скачать

№494. Найдите диагональ и площадь ромба, если его сторона равна 10 см, а другая диагональ — 12 см.Скачать

Задание 17 ОГЭ по математике. Ромб. Найти высоту ромба.Скачать

Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Геометрия 8 класс. Разбор решения задачи на нахождение стороны ромба по диагоналямСкачать









