Радиус описанной окружности равнобедренного треугольника можно найти по одной из общих формул радиуса окружности, описанной около треугольника.
Используя свойства равнобедренного треугольника, можно также получить дополнительные формулы.
I. Радиус описанной около треугольника окружности можно найти по формуле
Площадь равнобедренного треугольника через длину основание a и боковую сторону b можно найти по формуле
соответственно, формула для нахождения радиуса описанной окружности для равнобедренного треугольника принимает вид:
верна и для равнобедренного треугольника.
Радиус описанной около равнобедренного треугольника окружности:
где a — основание, b — боковая сторона, α — угол при вершине, β — угол при основании.
III. Радиус описанной окружности в равнобедренном треугольнике можно найти непосредственно, без использования общих формул.
Например, в прямоугольном треугольнике AOF AO=R, AF=b/2, ∠FAO=α/2. Отсюда
IV. В равнобедренном тупоугольном треугольнике центр описанной окружности лежит вне треугольника, напротив его вершины.
Радиус находят по тем же формулам, что и для остроугольного треугольника.
V. В равнобедренном прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, радиус равен половине гипотенузы (то есть половине основания треугольника).
- Все формулы для треугольника
- 1. Как найти неизвестную сторону треугольника
- 2. Как узнать сторону прямоугольного треугольника
- 3. Формулы сторон равнобедренного треугольника
- 4. Найти длину высоты треугольника
- Радиус описанной окружности около равнобедренного треугольника онлайн
- 1. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и боковая сторона b=c
- 2. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и противолежащий угол A
- 3. Радиус окружности описанной около равнобедренного треугольника, если известны боковая сторона b=c треугольника и угол между боковыми сторонами A
- 4. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и прилежащий угол B=C
- 🎦 Видео
Видео:Радиус описанной окружностиСкачать
Все формулы для треугольника
Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать
1. Как найти неизвестную сторону треугольника
Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.
a , b , c — стороны произвольного треугольника
α , β , γ — противоположные углы
Формула длины через две стороны и угол (по теореме косинусов), ( a ):
* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение
Формула длины через сторону и два угла (по теореме синусов), ( a):
Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать
2. Как узнать сторону прямоугольного треугольника
Есть следующие формулы для определения катета или гипотенузы
a , b — катеты
c — гипотенуза
α , β — острые углы
Формулы для катета, ( a ):
Формулы для катета, ( b ):
Формулы для гипотенузы, ( c ):
Формулы сторон по теореме Пифагора, ( a , b ):
Видео:Свойство окружности, описанной около равнобедренного треугольникаСкачать
3. Формулы сторон равнобедренного треугольника
Вычислить длину неизвестной стороны через любые стороны и углы
b — сторона (основание)
a — равные стороны
α — углы при основании
β — угол образованный равными сторонами
Формулы длины стороны (основания), (b ):
Формулы длины равных сторон , (a):
Видео:Геометрия Боковые стороны равнобедренного треугольника равны 4, радиус описанной окружности равенСкачать
4. Найти длину высоты треугольника
Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).
Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.
H — высота треугольника
a — сторона, основание
b, c — стороны
β , γ — углы при основании
p — полупериметр, p=(a+b+c)/2
R — радиус описанной окружности
S — площадь треугольника
Формула длины высоты через стороны, ( H ):
Формула длины высоты через сторону и угол, ( H ):
Формула длины высоты через сторону и площадь, ( H ):
Формула длины высоты через стороны и радиус, ( H ):
Видео:Геометрия Найдите радиус окружности описанной около равнобедренного треугольника с основанием 16 смСкачать
Радиус описанной окружности около равнобедренного треугольника онлайн
С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор |
Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
1. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и боковая сторона b=c
Пусть известны основание a равнобедренного треугольника и боковая сторона b=c. Найдем радиус описанной окружности около равнобедренного треугольника. На странице Радиус окружности описанной около треугольника онлайн была выведена формула вычисления радиуса R описанной около любого треугольника окружности:
( small R=frac<large 4 cdot sqrt >. ) | (1) |
где p вычисляется из формулы:
( small p= frac. ) | (2) |
Учитывая, что у нас треугольник равнобедренный, т.е. b=c, имеем:
( small p= frac=b+ frac, ) | (3) |
( small p-a= b- frac, ) | (4) |
( small p-b= frac, ) | (5) |
Подставляя (3)−(5) в (1) и учитывая, что b=c, получим:
( small R=frac<large 4 cdot frac cdot sqrt<left ( b+fracright)left ( b-fracright)>> ) ( small =frac<large 2 cdot sqrt< b^2-frac>> ) ( small =frac< sqrt> ,) |
( small R=frac< sqrt>. ) | (6) |
Пример 1. Известны основание ( small a=7 ) и боковая сторона ( small b=frac ) равнобедренного треугольника. Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (6).
Подставим значения ( small a=7 ) и ( small b=frac ) в (6):
Ответ:
Видео:Задача 6 №27923 ЕГЭ по математике. Урок 140Скачать
2. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и противолежащий угол A
Пусть известны сторона a и противолежащий угол A. Формула для нахождения радиуса окружности описанной около равнобедренного треугольника по основанию и противолежащему углу аналогична формуле для нахождения радиуса окружности описанной около произвольного треугольника:
. | (7) |
Пример 2. Сторона основание равнобедренного треугольника равна:( small a=21 ) а противолежащий угол ( small angle A=60°.) Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (7). Подставим значения ( small a=21 ) и ( small angle A=60° ) в (7):
. |
Ответ:
Видео:Три способа нахождения радиуса описанной окружности вокруг треугольникаСкачать
3. Радиус окружности описанной около равнобедренного треугольника, если известны боковая сторона b=c треугольника и угол между боковыми сторонами A
Пусть известны боковая сторона b=c равнобедренного треугольника и угол между боковыми сторонами A. Найдем радиус описанной окружности около равнобедренного треугольника.
На странице Радиус описанной окружности около треугольника онлайн была выведена формула для нахождения радиуса описанной окружности около треугольника при известных сторонах и углу между ними:
. | (8) |
Подставляя в (8) c=b, получим:
. | (9) |
Пример 3. Известны основание ( small a=21 ) равнобедренного треугольника и угол между боковыми сторонами: ( small angle A=70°. ) Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (9). Подставим значения ( small a=21; ) и ( small angle A=70° ) в (9):
Ответ:
Видео:Радиус описанной окружностиСкачать
4. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и прилежащий угол B=C
Пусть известны основание a равнобедренного треугольника и прилежащие к ней угол B=C. Найдем радиус описанной окружности около треугольника. На странице Радиус описанной окружности около треугольника онлайн была выведена формула для нахождения радиуса описанной окружности около треугольника при известной стороне и прилежащим двум углам:
. | (10) |
Подставляя ( small C=B ) в (10), получим требуемую формулу:
. | (11) |
Пример 4. Известны основание равнобедренного треугольника ( small a=14 ) и прилежащий к ней угол: ( small angle B=25°. ) Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (11). Подставим значения ( small a=14 ) и ( small angle B=25° ) в (11):
Ответ:
🎦 Видео
ЕГЭ 6 номер. Нахождение стороны правильного треугольника по радиусу вписанной окружности.Скачать
найти радиус окружности, описанной вокруг треугольникаСкачать
ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать
Как найти диаметр окружности, описанной около равнобедренного треугольникаСкачать
Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать
Вписанная и описанная около равнобедренного треугольника, окружностьСкачать
2080 Боковые стороны равнобедренного треугольника равны 569 основание равно 462Скачать
Задание 16 ОГЭ по математике. Окружность вписана в равносторонний треугольник.Скачать
Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать