Как найти собственные значения и собственные векторы матрицы 4 на 4

Собственные векторы матрицы

Онлайн калькулятор нахождение собственных чисел и собственных векторов — Собственный вектор — понятие в линейной алгебре, определяемое для квадратной матрицы или произвольного линейного преобразования как вектор, умножение матрицы на который или применение к которому преобразования даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение, называемое собственным числом матрицы или линейного преобразования.

Данный калькулятор поможет найти собственные числа и векторы, используя характеристическое уравнение.

Видео:Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

Как найти собственные значения и собственные векторы матрицы 4 на 4

Найдем такие вектора (называются собственными векторами) v
и такие числа — значения (называются собственными значениями) l
матрицы A, для v, l и A выполняется:
A*v = l*v.

Также вычисляется кратность собственных значений и находит характеристическое уравнение матрицы.

© Контрольная работа РУ — калькуляторы онлайн

Видео:Собственные значения и собственные векторы матрицы (4)Скачать

Собственные значения и собственные векторы матрицы (4)

Где учитесь?

Для правильного составления решения, укажите:

Видео:Собственные векторы и собственные значения матрицыСкачать

Собственные векторы и собственные значения матрицы

Математический портал

Видео:Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора
  • Вы здесь:
  • HomeКак найти собственные значения и собственные векторы матрицы 4 на 4
  • Векторная алгебра.Как найти собственные значения и собственные векторы матрицы 4 на 4
  • Собственные числа и вектора матриц. Методы их нахождения

Как найти собственные значения и собственные векторы матрицы 4 на 4Как найти собственные значения и собственные векторы матрицы 4 на 4Как найти собственные значения и собственные векторы матрицы 4 на 4Как найти собственные значения и собственные векторы матрицы 4 на 4Как найти собственные значения и собственные векторы матрицы 4 на 4

Видео:Собственные значения и собственные векторы. ТемаСкачать

Собственные значения и собственные векторы. Тема

Собственные числа и вектора матриц. Методы их нахождения.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Пусть число $lambda$ и вектор $xin L, xneq 0$ таковы, что $$Ax=lambda x.qquadqquadqquadqquadqquad(1)$$ Тогда число $lambda$ называется собственным числом линейного оператора $A,$ а вектор $x$ собственным вектором этого оператора, соответствующим собственному числу $lambda.$

В конечномерном пространстве $L_n$ векторное равенство (1) эквивалентно матричному равенству $$(A-lambda E)X=0,,,,, Xneq 0.qquadqquadquadquad (2)$$

Отсюда следует, что число $lambda$ есть собственное число оператора $A$ в том и только том случае, когда детерминант $det(A-lambda E)=0,$ т. е. $lambda$ есть корень многочлена $p(lambda)=det(A-lambda E),$ называемого характеристическим многочленом оператора $A.$ Столбец координат $X$ любого собственного вектора соответствующего собственному числу $lambda$ есть нетривиальное решение однородной системы (2).

Примеры.

Найти собственные числа и собственные векторы линейных операторов, заданных своими матрицами.

Решение.

Найдем собственные вектора заданного линейного оператора. Число $lambda$ есть собственное число оператора $A$ в том и только том случае, когда $det(A-lambda E)=0.$ Запишем характеристическое уравнение:

$$det(A-lambda E)=begin2-lambda&-1&2\5&-3-lambda&3\-1&0&-2-lambdaend=$$ $$=(2-lambda)(-3-lambda)(-2-lambda)+3+2(-3-lambda)+5(-2-lambda)=$$ $$=-lambda^3-3lambda^2+4lambda+12+3-6-2lambda-10-5lambda=-lambda^3-3lambda^2-3lambda-1=0.$$

Решим найденное уравнение, чтобы найти собственные числа.

$$lambda^3+3lambda^2+3lambda+1=(lambda^3+1)+3lambda(lambda+1)=$$ $$=(lambda+1)(lambda^2-lambda+1)+3lambda(lambda+1)=(lambda+1)(lambda^2-lambda+1+3lambda)=$$ $$=(lambda+1)(lambda^2+2lambda+1)=(lambda+1)^3=0Rightarrow lambda=-1.$$

Собственный вектор для собственного числа $lambda=-1$ найдем из системы $$(A-lambda E)X=0, Xneq 0, Rightarrow (A+E)X=0, Xneq 0$$

Решим однородную систему уравнений:

Вычислим ранг матрицы коэффициентов $A=begin3&-1&2\5&-2&3\-1&0&-1end$ методом окаймляющих миноров:

Фиксируем минор отличный от нуля второго порядка $M_2=begin3&-1\5&-2end=-6+5=-1neq 0.$

Таким образом ранг матрицы $A$ равен двум.

Выберем в качестве базисного минор $M=begin3&-1\5&-2end=-1neq 0.$ Тогда, полагая $x_3=c,$ получаем: $$left<begin3x_1-x_2+2с=0\ 5x_1-2x_2+3с=0endright.Rightarrowleft<begin3x_1-x_2=-2c\5x_1-2x_2=-3cendright.$$

По правилу Крамера находим $x_1$ и $x_2:$

Таким образом, общее решение системы $X(c)=begin-c\-c\cend.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=begin-1\-1\1end.$

С использованием фундаментальной системы решений, общее решение может быть записано в виде $X(c)=cE.$

Ответ: $lambda=-1;$ $X=cbegin-1\-1\1end, cneq 0.$

Решение.

Найдем собственные вектора заданного линейного оператора. Число $lambda$ есть собственное число оператора $A$ в том и только том случае, когда $det(A-lambda E)=0.$ Запишем характеристическое уравнение:

$$det(A-lambda E)=begin-lambda&-1&0\1&1-lambda&-2\1&-1&-lambdaend=$$ $$=-lambda(1-lambda)(-lambda)+2-lambda+2lambda=$$ $$=-lambda^3+lambda^2+lambda+2=0.$$

Решим найденное уравнение, чтобы найти собственные числа.

Собственный вектор для собственного числа $lambda=2$ найдем из системы $$(A-lambda E)X=0, Xneq 0, Rightarrow (A-2E)X=0, Xneq 0$$

Решим однородную систему уравнений:

Вычислим ранг матрицы коэффициентов $A=begin-2&-1&0\1&-1&-2\1&-1&-2end$ методом окаймляющих миноров:

Фиксируем минор отличный от нуля второго порядка $M_2=begin-2&-1\1&-1end=2+1=3neq 0.$

Таким образом ранг матрицы $A$ равен двум.

Выберем в качестве базисного минор $M=begin-2&-1\1&-1end=3neq 0.$ Тогда, полагая $x_3=c,$ получаем: $$left<begin-2x_1-x_2=0\ x_1-x_2-2с=0endright.Rightarrowleft<begin-2x_1-x_2=0\x_1-x_2=2cendright.$$

По правилу Крамера находим $x_1$ и $x_2:$

Таким образом, общее решение системы $X(c)=beginfrac\-frac\cend.$

Из общего решения находим фундаментальную систему решений: $E=X(1)=beginfrac\-frac\1end.$

С использованием фундаментальной системы решений, общее решение может быть записано в виде $X(c)=cE.$ Переобозначив постоянную, $alpha=3c,$ получаем собственный вектор $X=alphabegin2\-4\3end, alphaneq 0.$

Домашнее задание.

Найти собственные числа и собственные векторы линейных операторов, заданных своими матрицами.

Ответ: $lambda=2;$ $X=c_1begin1\2\0end+c_2begin0\0\1end, $c_1$ и $ c_2$ не равны одновременно нулю.

📺 Видео

7 4 Собственные векторы и собственные значенияСкачать

7 4  Собственные векторы и собственные значения

Собственные значения и собственные векторыСкачать

Собственные значения и собственные векторы

А.7.35 Собственные вектора и собственные значения матрицыСкачать

А.7.35 Собственные вектора и собственные значения матрицы

Собственные значения и собственные векторы. ПримерСкачать

Собственные значения и собственные векторы. Пример

Айгенвектора и айгензначения | Сущность Линейной Алгебры, глава 10Скачать

Айгенвектора и айгензначения | Сущность Линейной Алгебры, глава 10

Линал 1.8 Собственные векторы и собственные числаСкачать

Линал 1.8 Собственные векторы и собственные числа

Диагональный вид матрицы. Приведение матрицы к диагональному виду. Собственные векторыСкачать

Диагональный вид матрицы.  Приведение матрицы к диагональному виду.  Собственные векторы

Собственные векторы и собственные значенияСкачать

Собственные векторы и собственные значения

Собственные значения матрицыСкачать

Собственные значения матрицы

Собственные числа и собственные векторы линейного оператораСкачать

Собственные числа и собственные векторы линейного оператора

Овчинников А. В. - Линейная алгебра - Собственные значения и собственные векторы линейного оператораСкачать

Овчинников А. В. - Линейная алгебра - Собственные значения и собственные векторы линейного оператора

Квантовая механика 8 - Операторы. Собственные векторы и собственные значения.Скачать

Квантовая механика 8 - Операторы. Собственные векторы и собственные значения.

Собственные значения и собственные вектора матричного оператораСкачать

Собственные значения и собственные вектора матричного оператора

Практика 1. Часть 1. Собственные вектора и значения линейного оператора. Канонический вид.Скачать

Практика 1. Часть 1. Собственные вектора и значения линейного оператора. Канонический вид.

Линал 4.2. Нахождение собственных чисел и векторовСкачать

Линал 4.2. Нахождение собственных чисел и векторов
Поделиться или сохранить к себе: