Как найти радиус окружности зная сторону треугольника и угол

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

Как найти радиус окружности зная сторону треугольника и угол

Как найти радиус окружности зная сторону треугольника и угол

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Как найти радиус окружности зная сторону треугольника и угол

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

Как найти радиус окружности зная сторону треугольника и угол

Как найти радиус окружности зная сторону треугольника и угол

где a – сторона треугольника.

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Как найти радиус окружности зная сторону треугольника и угол

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Как найти радиус окружности зная сторону треугольника и угол

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Как найти радиус окружности зная сторону треугольника и угол

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Радиус описанной около треугольника окружности

Радиус описанной около треугольника окружности можно найти по одной из двух общих формул.

Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.

Радиус описанной около произвольного треугольника окружности

Как найти радиус окружности зная сторону треугольника и угол

Как найти радиус окружности зная сторону треугольника и угол

То есть радиус описанной окружности равен отношению длины стороны треугольника к удвоенному синусу противолежащего этой стороне угла.

В общем виде эту формулу записывают так:

Как найти радиус окружности зная сторону треугольника и угол

Как найти радиус окружности зная сторону треугольника и угол

Как найти радиус окружности зная сторону треугольника и угол

То есть чтобы найти радиус описанной около треугольника окружности, надо произведения длин сторон треугольника разделить на четыре площади треугольника.

Если площадь треугольника находить по формуле Герона

Как найти радиус окружности зная сторону треугольника и угол

где p — полупериметр,

Как найти радиус окружности зная сторону треугольника и угол

то получим формулу радиуса описанной около треугольника окружности через длины сторон:

Как найти радиус окружности зная сторону треугольника и угол

Как найти радиус окружности зная сторону треугольника и угол

Обе эти формулы можно применить к треугольнику любого вида. Следует только учесть положение центра.

Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника, напротив тупого угла.

Радиус окружности, описанной около прямоугольного треугольника

Как найти радиус окружности зная сторону треугольника и уголФормула:

Как найти радиус окружности зная сторону треугольника и угол

То есть в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

Обычно гипотенузу обозначают через c (AB=c) и формулу записывают так:

Как найти радиус окружности зная сторону треугольника и угол

Радиус окружности, описанной около правильного треугольника

Как найти радиус окружности зная сторону треугольника и угол

Как найти радиус окружности зная сторону треугольника и угол

Если без иррациональности в знаменателе, то

Как найти радиус окружности зная сторону треугольника и угол

В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной окружности:

Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Теорема синусов

Как найти радиус окружности зная сторону треугольника и угол

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Как найти радиус окружности зная сторону треугольника и угол

Формула теоремы синусов:

Как найти радиус окружности зная сторону треугольника и угол

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Как найти радиус окружности зная сторону треугольника и угол

Из этой формулы мы получаем два соотношения:


    Как найти радиус окружности зная сторону треугольника и угол

Как найти радиус окружности зная сторону треугольника и угол
На b сокращаем, синусы переносим в знаменатели:
Как найти радиус окружности зная сторону треугольника и угол

  • Как найти радиус окружности зная сторону треугольника и угол
    bc sinα = ca sinβ
    Как найти радиус окружности зная сторону треугольника и угол
  • Из этих двух соотношений получаем:

    Как найти радиус окружности зная сторону треугольника и угол

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Как найти радиус окружности зная сторону треугольника и угол

    Как найти радиус окружности зная сторону треугольника и угол

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Как найти радиус окружности зная сторону треугольника и угол

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Как найти радиус окружности зная сторону треугольника и угол

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Как найти радиус окружности зная сторону треугольника и угол

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Как найти радиус окружности зная сторону треугольника и угол

    Вспомним свойство вписанного в окружность четырёхугольника:

    Как найти радиус окружности зная сторону треугольника и угол

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Как найти радиус окружности зная сторону треугольника и угол

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Как найти радиус окружности зная сторону треугольника и угол

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Как найти радиус окружности зная сторону треугольника и угол

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Как найти радиус окружности зная сторону треугольника и угол

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Как найти радиус окружности зная сторону треугольника и угол

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Как найти радиус окружности зная сторону треугольника и угол

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Как найти радиус окружности зная сторону треугольника и угол

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Как найти радиус окружности зная сторону треугольника и угол

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Как найти радиус окружности зная сторону треугольника и угол

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Найти радиус окружности, зная угол и противолежащую сторону вписанного треугольника, и наоборотСкачать

    Найти радиус окружности, зная угол и противолежащую сторону вписанного треугольника, и наоборот

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Как найти радиус окружности зная сторону треугольника и угол
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Как найти радиус окружности зная сторону треугольника и угол

    Как найти радиус окружности зная сторону треугольника и угол

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

    Окружность вписана в равнобедренный треугольник. Найти её радиус.

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Как найти радиус окружности зная сторону треугольника и угол

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    🎥 Видео

    Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать

    Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математика

    9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

    9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

    ЕГЭ 6 номер. Нахождение стороны правильного треугольника по радиусу вписанной окружности.Скачать

    ЕГЭ 6 номер. Нахождение стороны правильного треугольника по радиусу вписанной окружности.

    Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬСкачать

    Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬ

    Найдите третью сторону треугольникаСкачать

    Найдите третью сторону треугольника

    №17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

    №17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

    Формулы равностороннего треугольника #shortsСкачать

    Формулы равностороннего треугольника #shorts

    Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

    Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

    Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

    Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.

    Задача 6 №27921 ЕГЭ по математике. Урок 138Скачать

    Задача 6 №27921 ЕГЭ по математике. Урок 138

    Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

    Задача 6 №27910 ЕГЭ по математике. Урок 130
    Поделиться или сохранить к себе: