Как найти радиус окружности по теореме синусов

Теорема синусов

Как найти радиус окружности по теореме синусов

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:#233. Теоремы синусов и косинусов | Формулы радиусов окружностейСкачать

#233. Теоремы синусов и косинусов | Формулы радиусов окружностей

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Как найти радиус окружности по теореме синусов

Формула теоремы синусов:

Как найти радиус окружности по теореме синусов

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Как найти радиус окружности по теореме синусов

Из этой формулы мы получаем два соотношения:


    Как найти радиус окружности по теореме синусов

Как найти радиус окружности по теореме синусов
На b сокращаем, синусы переносим в знаменатели:
Как найти радиус окружности по теореме синусов

  • Как найти радиус окружности по теореме синусов
    bc sinα = ca sinβ
    Как найти радиус окружности по теореме синусов
  • Из этих двух соотношений получаем:

    Как найти радиус окружности по теореме синусов

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Как найти радиус окружности по теореме синусов

    Как найти радиус окружности по теореме синусов

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Как найти радиус окружности по теореме синусов

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Как найти радиус окружности по теореме синусов

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Как найти радиус окружности по теореме синусов

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Как найти радиус окружности по теореме синусов

    Вспомним свойство вписанного в окружность четырёхугольника:

    Как найти радиус окружности по теореме синусов

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Как найти радиус окружности по теореме синусов

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Как найти радиус окружности по теореме синусов

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

    найти радиус окружности, описанной вокруг треугольника

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Как найти радиус окружности по теореме синусов

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Как найти радиус окружности по теореме синусов

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Как найти радиус окружности по теореме синусов

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Как найти радиус окружности по теореме синусов

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Как найти радиус окружности по теореме синусов

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Как найти радиус окружности по теореме синусов

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Как найти радиус окружности по теореме синусов

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:ОГЭ по математике. Задание 24. Теорема синусов. Радиус описанной окружности.Скачать

    ОГЭ по математике. Задание 24. Теорема синусов. Радиус описанной окружности.

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Как найти радиус окружности по теореме синусов
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Как найти радиус окружности по теореме синусов

    Как найти радиус окружности по теореме синусов

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Нахождение радиуса окружности, описанной около треугольника. Теорема синусов. ЗадачаСкачать

    Нахождение радиуса окружности, описанной около треугольника. Теорема синусов. Задача

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Как найти радиус окружности по теореме синусов

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:Теорема синусов – просто и красиво // Vital MathСкачать

    Теорема синусов – просто и красиво // Vital Math

    Радиус описанной около треугольника окружности

    Радиус описанной около треугольника окружности можно найти по одной из двух общих формул.

    Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.

    Радиус описанной около произвольного треугольника окружности

    Как найти радиус окружности по теореме синусов

    Как найти радиус окружности по теореме синусов

    То есть радиус описанной окружности равен отношению длины стороны треугольника к удвоенному синусу противолежащего этой стороне угла.

    В общем виде эту формулу записывают так:

    Как найти радиус окружности по теореме синусов

    Как найти радиус окружности по теореме синусов

    Как найти радиус окружности по теореме синусов

    То есть чтобы найти радиус описанной около треугольника окружности, надо произведения длин сторон треугольника разделить на четыре площади треугольника.

    Если площадь треугольника находить по формуле Герона

    Как найти радиус окружности по теореме синусов

    где p — полупериметр,

    Как найти радиус окружности по теореме синусов

    то получим формулу радиуса описанной около треугольника окружности через длины сторон:

    Как найти радиус окружности по теореме синусов

    Как найти радиус окружности по теореме синусов

    Обе эти формулы можно применить к треугольнику любого вида. Следует только учесть положение центра.

    Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

    Центр описанной около тупоугольного треугольника окружности лежит вне треугольника, напротив тупого угла.

    Радиус окружности, описанной около прямоугольного треугольника

    Как найти радиус окружности по теореме синусовФормула:

    Как найти радиус окружности по теореме синусов

    То есть в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

    Обычно гипотенузу обозначают через c (AB=c) и формулу записывают так:

    Как найти радиус окружности по теореме синусов

    Радиус окружности, описанной около правильного треугольника

    Как найти радиус окружности по теореме синусов

    Как найти радиус окружности по теореме синусов

    Если без иррациональности в знаменателе, то

    Как найти радиус окружности по теореме синусов

    В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной окружности:

    Видео:Окружность. Длина хорды. Теорема синусов.Скачать

    Окружность. Длина хорды. Теорема синусов.

    Нахождение радиуса описанной вокруг треугольника окружности

    В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

    Видео:9 класс, 13 урок, Теорема синусовСкачать

    9 класс, 13 урок, Теорема синусов

    Формулы вычисления радиуса описанной окружности

    Произвольный треугольник

    Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

    Как найти радиус окружности по теореме синусов

    Как найти радиус окружности по теореме синусов

    где a, b, c – стороны треугольника, S – его площадь.

    Прямоугольный треугольник

    Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

    Как найти радиус окружности по теореме синусов

    Равносторонний треугольник

    Радиус описанной около правильного треугольника окружности вычисляется по формуле:

    Как найти радиус окружности по теореме синусов

    Как найти радиус окружности по теореме синусов

    где a – сторона треугольника.

    Видео:Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

    Самый короткий тест на интеллект Задача Массачусетского профессора

    Примеры задач

    Задание 1
    Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

    Решение
    Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

    Как найти радиус окружности по теореме синусов

    Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

    Как найти радиус окружности по теореме синусов

    Задание 2
    Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

    Решение
    Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

    Как найти радиус окружности по теореме синусов

    Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

    🎬 Видео

    Радиус описанной окружностиСкачать

    Радиус описанной окружности

    Тригонометрическая окружность. Как выучить?Скачать

    Тригонометрическая окружность. Как выучить?

    Теорема синусов и радиус описанной окружности.Скачать

    Теорема синусов и радиус описанной окружности.

    Радиус описанной окружности (ОГЭ, ЕГЭ)Скачать

    Радиус описанной окружности (ОГЭ, ЕГЭ)

    Теорема синусов - радиус описанной окружности #Математика #ЕГЭ #ОГЭ #Геометрия #ТреугольникСкачать

    Теорема синусов - радиус описанной окружности #Математика #ЕГЭ #ОГЭ #Геометрия #Треугольник

    Задача Найти радиус без теоремы синусов ОГЭ вторая частьСкачать

    Задача Найти радиус без теоремы синусов ОГЭ вторая часть

    Как найти радиус | Профильная математикаСкачать

    Как найти радиус | Профильная математика

    Теорема синусов на ОГЭ по математикеСкачать

    Теорема синусов на ОГЭ по математике

    Найдите площадь треугольника изображенного на клетчатой бумаге с размером клетки 1х1 см.Скачать

    Найдите площадь треугольника изображенного на клетчатой бумаге с размером клетки 1х1 см.

    Найти радиус окружности, зная угол и противолежащую сторону вписанного треугольника, и наоборотСкачать

    Найти радиус окружности, зная угол и противолежащую сторону вписанного треугольника, и наоборот

    Теорема синусов. Радиус описанной окружности. #shortsСкачать

    Теорема синусов. Радиус описанной окружности.  #shorts
    Поделиться или сохранить к себе: