Как найти площадь вписанной окружности в треугольник

Как найти площадь треугольника

Как найти площадь вписанной окружности в треугольник

О чем эта статья:

8 класс, 9 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Содержание
  1. Основные понятия
  2. Формула площади треугольника
  3. Общая формула
  4. 1. Площадь треугольника через основание и высоту
  5. 2. Площадь треугольника через две стороны и угол между ними
  6. 3. Площадь треугольника через описанную окружность и стороны
  7. 4. Площадь треугольника через вписанную окружность и стороны
  8. 5. Площадь треугольника по стороне и двум прилежащим углам
  9. 6. Формула Герона для вычисления площади треугольника
  10. Для прямоугольного треугольника
  11. Площадь треугольника с углом 90° по двум сторонам
  12. Площадь треугольника по гипотенузе и острому углу
  13. Площадь прямоугольного треугольника по катету и прилежащему углу
  14. Площадь треугольника через гипотенузу и радиус вписанной окружности
  15. Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу
  16. Площадь прямоугольного треугольника по формуле Герона
  17. Для равнобедренного треугольника
  18. Вычисление площади через основание и высоту
  19. Поиск площади через боковые стороны и угол между ними
  20. Площадь равностороннего треугольника через радиус описанной окружности
  21. Площадь равностороннего треугольника через радиус вписанной окружности
  22. Площадь равностороннего треугольника через сторону
  23. Площадь равностороннего треугольника через высоту
  24. Таблица формул нахождения площади треугольника
  25. Площадь круга, вписанного в равносторонний треугольник: решение
  26. Содержание:
  27. Особенности явления
  28. Способ вычислить площадь круга, вписанного в треугольник
  29. Задачи
  30. Как найти площадь треугольника – все способы от самых простых до самых сложных
  31. Если треугольник прямоугольный
  32. Если он равнобедренный
  33. Если он равносторонний
  34. Если известна сторона и высота
  35. Если известны две стороны и градус угла между ними
  36. Если известны длины трех сторон
  37. Если известны три стороны и радиус описанной окружности
  38. Если известны три стороны и радиус вписанной окружности
  39. 📺 Видео

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Основные понятия

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.

Если значения заданы в разных единицах измерения длины, мы не сможем узнать, какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Формула площади треугольника

Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.

Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.

Научиться быстро щелкать задачки на нахождение площади треугольника помогут курсы по математике от Skysmart!

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Общая формула

1. Площадь треугольника через основание и высоту

, где — основание, — высота.

2. Площадь треугольника через две стороны и угол между ними

, где , — стороны, — угол между ними.

3. Площадь треугольника через описанную окружность и стороны

, где , , — стороны, — радиус описанной окружности.

4. Площадь треугольника через вписанную окружность и стороны

, где , , — стороны, — радиус вписанной окружности.

Если учитывать, что — это способ поиска полупериметра, то формулу можно записать следующим образом:

5. Площадь треугольника по стороне и двум прилежащим углам

, где — сторона, и — прилежащие углы.

6. Формула Герона для вычисления площади треугольника

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

, где , , — стороны, — полупериметр, который можно найти по формуле:

Видео:Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать

Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольник

Для прямоугольного треугольника

Площадь треугольника с углом 90° по двум сторонам

Площадь треугольника по гипотенузе и острому углу

, где — гипотенуза, — любой из прилегающих острых углов.

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу

, где — катет, — прилежащий угол.

Катетом принято называть одну из двух сторон, образующих прямой угол.

Площадь треугольника через гипотенузу и радиус вписанной окружности

, где — гипотенуза, — радиус вписанной окружности.

Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу

, где , — части гипотенузы.

Площадь прямоугольного треугольника по формуле Герона

, где , — катеты, — полупериметр, который можно найти по формуле:

Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математике

Для равнобедренного треугольника

Вычисление площади через основание и высоту

, где — основание, — высота, проведенная к основанию.

Поиск площади через боковые стороны и угол между ними

, где — боковая сторона, — угол между боковыми сторонами.

Площадь равностороннего треугольника через радиус описанной окружности

, где — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности

, где — радиус вписанной окружности.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через высоту

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Таблица формул нахождения площади треугольника

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу, использовать как закладку в тетрадке или учебнике и обращаться к ней по необходимости.

Видео:Задача 6 №27624 ЕГЭ по математике. Урок 71Скачать

Задача 6 №27624 ЕГЭ по математике. Урок 71

Площадь круга, вписанного в равносторонний треугольник: решение

Содержание:

В геометрии встречаются понятия описанной и вписанной геометрических фигур. Описанным будет треугольник, через вершины которого проходит окружность, вписанным – если его стороны соприкасаются с кругом. Такое построение в обоих случаях обладает рядом особенностей, которые применяются на практике и упрощают решение задач. Рассмотрим свойства и формулы для расчёта описанного 3-угольника.

Видео:Радиус вписанной окружности, формулу через площадь и полупериметрСкачать

Радиус вписанной окружности, формулу через площадь и полупериметр

Особенности явления

Как найти площадь вписанной окружности в треугольник

Окружность с центром O, проходящая через одну из точек: D, E либо F обязательно будет лежать и на двух остальных. Прямые, разделяющие углы пополам, или биссектрисы равностороннего треугольника пересекаются в общей точке – центре вписанной окружности, который находится на одинаковом удалении от сторон геометрической фигуры.

Как найти площадь вписанной окружности в треугольник

Из вышесказанного следуют свойства:

  • В треугольник вписывается лишь один круг.
  • Его центр находится на одинаковом расстоянии от ближайших точек на сторонах 3-угольника.
  • Перпендикуляры, опущенные из центра O, и биссектрисы пересекаются в одной точке, называемой центром вписанной окружности.

Видео:Вписанная окружность в равностороннем треугольникеСкачать

Вписанная окружность  в равностороннем треугольнике

Способ вычислить площадь круга, вписанного в треугольник

Для вычисления площади, если дан только размер стороны правильного треугольника, применяется ряд формул.
S=πr 2 .

Как найти площадь вписанной окружности в треугольникa, где:

  • a – длина стороны геометрической фигуры;
  • r – радиус круга, расположенного внутри многоугольника с тремя равными сторонами.

После подстановки значения получается выражение для вычисления площади вписанной окружности:

Как найти площадь вписанной окружности в треугольник.

В задачах могут давать длину сторон, тогда Как найти площадь вписанной окружности в треугольник
Выражение Как найти площадь вписанной окружности в треугольникдля равностороннего треугольника можно записать в виде Как найти площадь вписанной окружности в треугольниктак как 3-угольник равносторонний. С иной стороны Как найти площадь вписанной окружности в треугольник– это полупериметр рассматриваемой геометрической фигуры – p.

Зная это, формула записывается в виде: S = r * p.

Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Задачи

Как найти площадь вписанной окружности в треугольник

В формулу подставим длину сторон треугольника, после вычислений получим результат.

Как найти площадь вписанной окружности в треугольник

Вычислить занимаемое вписанным в 3-угольник кругом пространство, если его сторона равна 10 см.

Как найти площадь вписанной окружности в треугольникДля вычислений необходимо найти радиус r.

Известно, что он определяется по формуле:

Как найти площадь вписанной окружности в треугольник

После преобразований выражение упрощается до Как найти площадь вписанной окружности в треугольник.

Как найти площадь вписанной окружности в треугольник– полупериметр.

Начинаем проводить вычисления.

P = a + a + a = 10 +10 +10 или 10 * 3 = 30 см.

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

Как найти площадь вписанной окружности в треугольник

Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Если треугольник прямоугольный

То есть один из его углов равен 90 градусам.

Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.

Как найти площадь вписанной окружности в треугольник

Видео:Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать

Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

Как найти площадь вписанной окружности в треугольник

Видео:Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать

Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математика

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

  1. Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
  2. Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
  3. Поделите все на 4.

Как найти площадь вписанной окружности в треугольник

Видео:Треугольник и окружность #shortsСкачать

Треугольник и окружность #shorts

Если известна сторона и высота

Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.

Как найти площадь вписанной окружности в треугольник

Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.

Видео:Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

Задача 6 №27910 ЕГЭ по математике. Урок 130

Если известны две стороны и градус угла между ними

Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:

Как найти площадь вписанной окружности в треугольник

Видео:ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Если известны длины трех сторон

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Как найти площадь вписанной окружности в треугольник

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Видео:Сможешь найти радиус вписанной окружности?Скачать

Сможешь найти радиус вписанной окружности?

Если известны три стороны и радиус описанной окружности

Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.

Как найти площадь вписанной окружности в треугольник

Видео:Запомни: все формулы для площади треугольникаСкачать

Запомни: все формулы для площади треугольника

Если известны три стороны и радиус вписанной окружности

Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.

Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.

Как найти площадь вписанной окружности в треугольник

Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.

📺 Видео

площадь треугольника. радиус вписанной окружностиСкачать

площадь треугольника. радиус вписанной окружности
Поделиться или сохранить к себе: