- Радиус вписанной окружности в треугольник
- Радиус вписанной окружности в равносторонний треугольник
- Радиус вписанной окружности равнобедренный треугольник
- Треугольник вписанный в окружность
- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
- Радиус вписанной окружности в равнобедренный треугольник онлайн
- 1. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и боковая сторона
- 2. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и угол при основании
- 3. Радиус вписанной в равнобедренный треугольник окружности, если известны боковая сторона и угол при основании
- 4. Радиус вписанной в равнобедренный треугольник окружности, если известны боковая сторона и высота
- 5. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и высота
- 📹 Видео
Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Радиус вписанной окружности в треугольник
a , b , c — стороны треугольника
p — полупериметр, p=( a + b + c )/2
Формула радиуса вписанной окружности в треугольник ( r ):
Видео:№690. Найдите основание равнобедренного треугольника, если центр вписанной в него окружностиСкачать

Радиус вписанной окружности в равносторонний треугольник
a — сторона треугольника
r — радиус вписанной окружности
Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):
Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Радиус вписанной окружности равнобедренный треугольник
1. Формулы радиуса вписанной окружности если известны: стороны и угол
a — равные стороны равнобедренного треугольника
b — сторона ( основание)
α — угол при основании
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :
2. Формулы радиуса вписанной окружности если известны: сторона и высота
a — равные стороны равнобедренного треугольника
b — сторона ( основание)
h — высота
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :
Видео:РАДИУС вписанной окружности #математика #огэ #огэматематика #данирСкачать

Треугольник вписанный в окружность
Видео:Геометрия Найдите радиус окружности описанной около равнобедренного треугольника с основанием 16 смСкачать

Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около 
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
 
Видео:ОГЭ Задание 25 Демонстрационный вариант 2022, математикаСкачать

Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник, 
 если известна площадь и все стороны:
 Радиус вписанной окружности в треугольник, 
если известны площадь и периметр:
 Радиус вписанной окружности в треугольник, 
если известны полупериметр и все стороны: 
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника, 
 если известна одна из сторон и синус противолежащего стороне угла:
 Радиус описанной окружности около треугольника, 
если известны все стороны и площадь: 
 Радиус описанной окружности около треугольника, 
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность, 
 если известен полупериметр и радиус вписанной окружности:
 Площадь треугольника вписанного в окружность, 
если известен полупериметр:
 Площадь треугольника вписанного в окружность, 
если известен высота и основание:
 Площадь треугольника вписанного в окружность, 
если известна сторона и два прилежащих к ней угла:
 Площадь треугольника вписанного в окружность, 
если известны две стороны и синус угла между ними:
[ S = fracab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность, 
 если известны все стороны:
 Периметр треугольника вписанного в окружность, 
если известна площадь и радиус вписанной окружности: 
 Периметр треугольника вписанного в окружность, 
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность, 
 если известны две стороны и косинус угла между ними:
 Сторона треугольника вписанного в 
окружность, если известна сторона и два угла: 
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного 
 в окружность, если известно основание:
 Средняя линия треугольника вписанного в окружность, 
если известныдве стороны, ни одна из них не является 
основанием, и косинус угламежду ними: 
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность, 
 если известна площадь и основание:
 Высота треугольника вписанного в окружность, 
если известен сторона и синус угла прилежащего 
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
 Высота треугольника вписанного в окружность, 
если известен радиус описанной окружности и 
две стороны, ни одна из которых не является основанием:
Видео:Задача 6 №27923 ЕГЭ по математике. Урок 140Скачать

Свойства
- Центр вписанной в треугольник окружности 
 находится на пересечении биссектрис.
- В треугольник, вписанный в окружность, 
 можно вписать окружность, причем только одну.
- Для треугольника, вписанного в окружность, 
 справедлива Теорема Синусов, Теорема Косинусов
 и Теорема Пифагора.
- Центр описанной около треугольника окружности 
 находится на пересечении серединных перпендикуляров.
- Все вершины треугольника, вписанного 
 в окружность, лежат на окружности.
- Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и 
 треугольника, в который вписана окружность, можно найти по
 формуле Герона.
Видео:Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
 
окружность и треугольник, 
которые изображены на рисунке 2.
окружность описана 
около треугольника.
- Проведем серединные 
 перпендикуляры — HO, FO, EO.
- O — точка пересечения серединных 
 перпендикуляров равноудалена от
 всех вершин треугольника.
- Центр окружности — точка пересечения 
 серединных перпендикуляров — около
 треугольника описана окружность — O,
 от центра окружности к вершинам можно
 провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника, 
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

Радиус вписанной окружности в равнобедренный треугольник онлайн
С помощю этого онлайн калькулятора можно найти радиус вписанной в треугольник окружности, в том числе радиус вписанной в равнобедренный треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
| Открыть онлайн калькулятор | 
Видео:Как найти диаметр окружности, описанной около равнобедренного треугольникаСкачать

1. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и боковая сторона
Пусть известны известны основание a и боковая сторона b равнобедренного треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной окружности через основание и боковую сторону.
|  | 
Радиус вписанной в треугольник окружности через три стороны a, b, c вычисляется из следующей формулы:
|  | (1) | 
где полупериметр p вычисляется из формулы:
|  . | (2) | 
Учитывая, что у равнобедренного треугольника боковые стороны равны (( small b=c )), имеем:
| ( small p=frac ) ( small =frac, ) | (3) | 
| ( small p-a=frac-a ) ( small =frac, ) | (4) | 
| ( small p-b=p-c=frac-b ) ( small =frac. ) | (5) | 
Подставляя (3)-(5) в (1), получим формулу вычисления радиуса вписанной в равнобедренный треугольник окружности:
|  , | 
|  . | (6) | 
Пример 1. Известны основание a=13 и боковая сторона b=7 равнобедренного треугольника. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значения ( small a,; b ) в (6):
|  | 
Ответ: 
Видео:Окружность вписана в равносторонний треугольник, найти радиусСкачать

2. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и угол при основании
Пусть известны основание a и прилежащий к ней угол β равнобедренного треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.
|  | 
Из центра вписанной окружности проведем перпендикуляры OH и OE к сторонам a=BC и b=AC, соответственно (r=OH=OE). Соединим точки C и O. Полученные прямоугольные треугольники OCE и OCH равны по гипотенузе и катету (см. статью Прямоугольный треугольник. Тогда ( small angle OCE=angle OCH=frac. ) Для прямоугольного треугольника OCH можно записать:
| ( small frac=frac<large frac>=mathrmfrac .) | 
Откуда получим формулу радиуса вписанной в треугольник окружности:
| ( small r=frac cdot mathrmfrac .) | (8) | 
| ( small r=frac cdot frac .) | (9) | 
Пример 2. Известны основание ( small a=15 ) и ( small beta=30° ) равнобедренного треугольника. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанный в треугольник воспользуемся формулой (8) (или (9)). Подставим значения ( small a=15, ; beta=30° ) в (8):
|  | 
Ответ: 
Видео:2080 Боковые стороны равнобедренного треугольника равны 569 основание равно 462Скачать

3. Радиус вписанной в равнобедренный треугольник окружности, если известны боковая сторона и угол при основании
Пусть известны боковая сторона b и угол при основании β равнобедренного треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.
|  | 
Высота равнобедренного треугольника AH делит равнобедренный треугольник ABC на две равные части. Тогда для треугольника AHC справедливо равенство:
| ( small frac=frac<large frac>= cos beta .) | 
| ( small a=2b cdot cos beta .) | (10) | 
Подставляя (10) в (8), получим формулу вписанной в равнобедренный треугольник окружности:
| ( small r=frac cdot mathrmfrac=frac cdot mathrmfrac ) ( small =b cos beta cdot mathrmfrac ) | 
| ( small r=b cdot cos beta cdot mathrmfrac ) | (11) | 
Учитывая формулы половинного угла тригонометрических функций, формулу (11) можно записать и так:
| ( small r=b cdot frac ) | (12) | 
Пример 3. Известны боковая сторона равнобедренного треугольника: ( small b=9 ) и угол при основании β=35°. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (11) (или (12)).
Подставим значения ( small b=9 ,; beta=35° ) в (11):
|  | 
Ответ: 
Видео:Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

4. Радиус вписанной в равнобедренный треугольник окружности, если известны боковая сторона и высота
Пусть известны боковая сторона b и высота h равнобедренного треугольника (Рис.4). Найдем формулу радиуса вписанной в треугольник окружности.
|  | 
Формула радиуса вписанной окружности через площадь и полупериметр имеет следующий вид (см. статью на странице Радиус вписанной в треугольник окружности онлайн) :
|  , | (13) | 
|  | (14) | 
Так как треугольник AHC прямоугольный, то из Теоремы Пифагора имеем:
| ( small left( fracright)^2=b^2-h^2 ) | 
| ( small a=2 cdot sqrt ) | (15) | 
Площадь равнобедренного треугольника по основанию и высоте вычисляется из формулы:
| ( small S=frac cdot a cdot h. ) | (16) | 
Подставим (15) в (16):
| ( small S=h cdot sqrt ) | (17) | 
Учитывая, что для равнобедренного треугольника b=c, а также равенство (15), получим:
| ( small p=frac ) ( small =frac ) ( small =frac+b )( small =b+ sqrt ) | (18) | 
Подставляя, наконец, (17) и (18) в (13), получим формулу радиуса вписанной в равнобедренный треугольник окружности:
| ( small r=frac ) ( small =frac<large h cdot sqrt><large b+ sqrt> ) | (19) | 
Пример 4. Боковая сторона и высота равнобедренного треугольника равны ( small b=7 ,) ( small h=5, ) соответственно. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в равнобедренный треугольник воспользуемся формулой (19). Подставим значения ( small b=7 ,) ( small h=5 ) в (19):
|  | 
Ответ: 
Видео:Формулы равностороннего треугольника #shortsСкачать

5. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и высота
Пусть известны основание a и высота h равнобедренного треугольника (Рис.5). Найдем формулу радиуса вписанной в равнобедренный треугольник окружности.
|  | 
Из формулы (15) найдем b:
| ( small b^2-h^2=left( frac right)^2 ) | 
| ( small b^2= frac +h^2 ) | 
| ( small b= frac cdot sqrt) | (20) | 
Подставляя (20) в (19), получим формулу радиуса вписанной окружности в равнобедренный треугольник:
| ( small r=frac<large h cdot sqrt><large b+ sqrt>) ( small =frac<large h cdot sqrt<frac+h^2-h^2>><large frac cdot sqrt+ sqrt<frac+h^2-h^2>>) ( small = large frac< h cdot frac>< frac cdot sqrt+frac >) | 
| ( small r=large frac<a+ sqrt>) | (21) | 
Пример 5. Основание и высота равнобедренного треугольника равны ( small a=7 ,) ( small h=9, ) соответственно. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в равнобедренный треугольник воспользуемся формулой (21). Подставим значения ( small a=7 ,) ( small h=9 ) в (21):
|  | 
Ответ: 
📹 Видео
Радиус описанной окружностиСкачать

№707. Угол, противолежащий основанию равнобедренного треугольника, равен 120°, боковая сторонаСкачать

найти радиус окружности, описанной вокруг треугольникаСкачать

Геометрия Радиус окружности вписанной в равнобедренный треугольник, составляет 2/9 высотыСкачать

Сможешь найти основание? Задача про медиану равнобедренного треугольникаСкачать

Вариант 55, № 8. Радиус окружности, описанной около равнобедренного треугольникаСкачать

















