Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Как найти гипотенузу: 4 способа поиска ответа

После изучения темы про прямоугольные треугольники ученики часто выбрасывают из головы всю информацию о них. В том числе и то, как найти гипотенузу, не говоря уже о том, что это такое.

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

И напрасно. Потому что в дальнейшем диагональ прямоугольника оказывается этой самой гипотенузой, и ее нужно найти. Или диаметр окружности совпадает с самой большой стороной треугольника, один из углов которого прямой. И найти ее без этого знания невозможно.

Существует несколько вариантов того, как найти гипотенузу треугольника. Выбор метода зависит от исходного набора данных в условии задачи величин.

Содержание
  1. Способ под номером 1: даны оба катета
  2. Способ под номером 2: известен катет и угол, который к нему прилежит
  3. Способ под номером 3: даны катет и угол, который лежит напротив него
  4. Способ под номером 4: по радиусу описанной окружности
  5. Пример задачи №1
  6. Пример задачи №2
  7. Как найти гипотенузу прямоугольного треугольника
  8. Радиус описанной окружности около прямоугольного треугольника онлайн
  9. 1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника
  10. 2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника
  11. 3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника
  12. 4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника
  13. 📸 Видео

Видео:Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

Способ под номером 1: даны оба катета

Это самый запоминающийся метод, потому что использует теорему Пифагора. Только иногда ученики забывают, что по этой формуле находится квадрат гипотенузы. Значит, чтобы найти саму сторону, нужно будет извлечь квадратный корень. Поэтому формула для гипотенузы, которую принято обозначать буквой «с», будет выглядеть так:

с = √ (а 2 + в 2 ), где буквами «а» и «в» записаны оба катета прямоугольного треугольника.

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математике

Способ под номером 2: известен катет и угол, который к нему прилежит

Для того чтобы узнать, как найти гипотенузу, потребуется вспомнить тригонометрические функции. А именно косинус. Для удобства будем считать, что даны катет «а» и прилежащий к нему угол α.

Теперь нужно вспомнить, что косинус угла прямоугольного треугольника равен отношению двух сторон. В числителе будет стоять значение катета, а в знаменателе — гипотенузы. Из этого следует, что последнюю можно будет сосчитать по формуле:

с = а / cos α.

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Способ под номером 3: даны катет и угол, который лежит напротив него

Чтобы не запутаться в формулах, введем обозначение для этого угла — β, а сторону оставим прежнюю «а». В этом случае потребуется другая тригонометрическая функция — синус.

Как и в предыдущем примере, синус равен отношению катета к гипотенузе. Формула этого способа выглядит так:

с = а / sin β.

Для того чтобы не запутаться в тригонометрических функциях, можно запомнить простое мнемоническое привило: если в задаче идет речь о противолежащем угле, то нужно использовать синус, если — о прилежащем, то косинус. Следует обратить внимание на первые гласные в ключевых словах. Они образуют пары о-и или и-о.

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Видео:Геометрия Катеты равнобедренного прямоугольного треугольника равны 2+√2. Найдите радиус окружностиСкачать

Геометрия Катеты равнобедренного прямоугольного треугольника равны 2+√2. Найдите радиус окружности

Способ под номером 4: по радиусу описанной окружности

Теперь, для того чтобы узнать, как найти гипотенузу, потребуется вспомнить свойство окружности, которая описана около прямоугольного треугольника. Оно гласит следующее. Центр окружности совпадает с серединой гипотенузы. Если сказать по-другому, то самая большая сторона прямоугольного треугольника равна диагонали окружности. То есть удвоенному радиусу. Формула для этой задачи будет выглядеть так:

с = 2 * r, где буквой r обозначен известный радиус.

Это все возможные способы того, как находить гипотенузу прямоугольного треугольника. Пользоваться в каждой конкретной задаче нужно тем методом, который больше подходит по набору данных.

Видео:Бестселлер Все правила по геометрии за 7 классСкачать

Бестселлер Все правила по геометрии за 7 класс

Пример задачи №1

Условие: в прямоугольном треугольнике проведены медианы к обоим катетам. Длина той, которая проведена к большей стороне, равна √52. Другая медиана имеет длину √73. Требуется вычислить гипотенузу.

Так как в треугольнике проведены медианы, то они делят катеты на два равных отрезка. Для удобства рассуждений и поиска того, как найти гипотенузу, нужно ввести несколько обозначений. Пусть обе половинки большего катета будут обозначены буквой «х», а другого — «у».

Теперь нужно рассмотреть два прямоугольных треугольника, гипотенузами у которых являются известные медианы. Для них нужно дважды записать формулу теоремы Пифагора:

(2у) 2 + х 2 = (√52) 2

(у) 2 + (2х) 2 = (√73) 2 .

Эти два уравнения образуют систему с двумя неизвестными. Решив их, легко можно будет найти катеты исходного треугольника и по ним его гипотенузу.

Сначала нужно все возвести во вторую степень. Получается:

Из второго уравнения видно, что у 2 = 73 — 4х 2 . Это выражение нужно подставить в первое и вычислить «х»:

4(73 — 4х 2 ) + х 2 = 52.

292 — 16 х 2 + х 2 = 52 или 15х 2 = 240.

Из последнего выражения х = √16 = 4.

Теперь можно вычислить «у»:

у 2 = 73 — 4(4) 2 = 73 — 64 = 9.

По данным условия получается, что катеты исходного треугольника равны 6 и 8. Значит, можно воспользоваться формулой из первого способа и найти гипотенузу:

√(6 2 + 8 2 ) = √(36 + 64) = √100 = 10.

Ответ: гипотенуза равна 10.

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Видео:Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬСкачать

Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬ

Пример задачи №2

Условие: вычислить диагональ, проведенную в прямоугольнике с меньшей стороной, равной 41. Если известно, что она делит угол на такие, которые соотносятся как 2 к 1.

В этой задаче диагональ прямоугольника является наибольшей стороной в треугольнике с углом 90º. Поэтому все сводится к тому, как найти гипотенузу.

В задаче идет речь об углах. Это значит, что нужно будет пользоваться одной из формул, в которых присутствуют тригонометрические функции. А сначала требуется определить величину одного из острых углов.

Пусть меньший из углов, о которых идет речь в условии, будет обозначен α. Тогда прямой угол, который делится диагональю, будет равен 3α. Математическая запись этого выглядит так:

Из этого уравнения просто определить α. Он будет равен 30º. Причем он будет лежать напротив меньшей стороны прямоугольника. Поэтому потребуется формула, описанная в способе №3.

Гипотенуза равна отношению катета к синусу противолежащего угла, то есть:

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Как найти гипотенузу прямоугольного треугольника

Среди многочисленных расчетов, производимых для вычисления тех или иных величин различных геометрических фигур, есть нахождение гипотенузы треугольника. Напомним, что треугольником называется многогранник, имеющий три угла. Ниже будут приведены несколько способов расчета гипотенузы различных треугольников.

Первоначально посмотрим, как найти гипотенузу прямоугольного треугольника. Для тех, кто подзабыл, прямоугольным называется треугольник, имеющий угол 90 градусов. Сторона треугольника, расположенная на противоположной стороне прямого угла, называется гипотенузой. К тому же, она является наиболее длинной стороной треугольника. В зависимости от известных величин длина гипотенузы рассчитывается следующим образом:

  • Известны длины катетов. Гипотенуза в этом случае исчисляется, используя теорему Пифагора, которая звучит следующим образом: квадрат гипотенузы равен сумме квадратов катетов. Если рассмотреть прямоугольный треугольник BKF, где BK и KF катеты, а FB – гипотенуза, то FB2= BK2+ KF2. Из вышесказанного следует, что при расчете длины гипотенузы нужно возвести поочередно в квадрат каждую из величин катетов. Затем сложить поученные цифры и из результата извлечь квадратный корень.

Рассмотрим пример: Дан треугольник с прямым углом. Один катет равен 3 см, другой 4см. Найти гипотенузу. Решение выглядит следующим образом.

FB2= BK2+ KF2= (3см)2+(4см)2= 9см2+16см2=25 см2. Извлекаем квадратный корень и получаем FB=5см.

  • Известен катет (BK) и угол, прилежащий к нему, который образуется гипотенузой и этим катетом. Как найти гипотенузу треугольника? Обозначим известный угол α. Согласно свойству прямоугольного треугольника, которое гласит, что отношение длины катета к длине гипотенузы равняется косинусу угла между этим катетом и гипотенузой. Рассматривая треугольник это можно записать так: FB= BK*cos(α).
  • Известен катет (KF) и тот же угол α, только теперь он уже будет противолежащим. Как найти гипотенузу в этом случае? Обратимся все к тем же свойствам прямоугольного треугольника и узнаем, что отношение длины катета к длине гипотенузы равняется синусу противолежащего катету угла. То есть FB= KF * sin (α).

Рассмотрим на примере. Дан все тот же прямоугольный треугольник BKF с гипотенузой FB. Пусть угол F равен 30 градусам, второй угол B соответствует 60 градусам. Еще известен катет BK, длина которого соответствует 8 см. Вычислить искомую величину можно так:

FB = BK /cos60 = 8 см.
FB = BK /sin30 = 8 см.

  • Известен радиус окружности (R), описанной около треугольника с прямым углом. Как найти гипотенузу при рассмотрении такой задачи? Из свойства окружности, описанной вокруг треугольника с прямым углом известно, что центр такой окружности совпадает с точкой гипотенузы, разделяющей ее пополам. Простыми словами – радиус соответствует половине гипотенузы. Отсюда гипотенуза равна двум радиусам. FB=2*R. Если же дана аналогичная задача, в которой известен не радиус, а медиана, то следует обратить внимание на свойство окружности, описанной вокруг треугольника с прямым углом, которое говорит, что радиус равен медиане, проведенной к гипотенузе. Используя все эти свойства, задача решается таким же способом.

Если стоит вопрос, как найти гипотенузу равнобедренного прямоугольного треугольника, то необходимо обратится все к той же теореме Пифагора. Но, в первую очередь вспомним, что равнобедренным треугольником, является треугольник, имеющий две одинаковые стороны. В случае с прямоугольным треугольником одинаковыми сторонами являются катеты. Имеем FB2= BK2+ KF2, но, так как BK= KF имеем следующее: FB2=2 BK2, FB= BK√2

Как видите, зная теорему Пифагора и свойства прямоугольного треугольника, решить задачи, при которых необходимо вычислить длину гипотенузы, очень просто. Если же все свойства запомнить сложно, выучите готовые формулы, подставив в которые известные значения можно будет рассчитать искомую длину гипотенузы.

Видео:Найдите гипотенузуСкачать

Найдите гипотенузу

Радиус описанной окружности около прямоугольного треугольника онлайн

С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника, в том числе радиус описанной окружности около прямоугольного треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника

Пусть известна гипотенуза c прямоугольного треугольника (Рис.1). Найдем радиус описанной окружности около треугольника.

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

На странице Радиус окружности описанной около треугольника формула радиуса описанной окружности около треугольника по стороне и противолежащему углу имеет вид:

( small R=frac )

где C − угол противолежащий гипотенузе прямоугольного треугольника. Поскольку угол, противолежащий гипотенузе − прямой, то получим:

( small R=frac=frac, )
( small R=frac. )(1)

Пример 1. Известна гипотенуза ( small с=frac ) прямоугольного треугольника. Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (1).

Подставим значение ( small c=frac ) в (1):

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Ответ: Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника

Пусть известны катеты a и b прямоугольного треугольника. Найдем радиус описанной окружности около треугольника (Рис.2).

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Из теоремы Пифагора запишем формулу гипотенузы, выраженная через катеты:

( small c=sqrt. )(2)

Подставляя (2) в (1), получим:

( small R=frac=frac<large sqrt>, )
( small R=frac<large sqrt>. )(3)

Пример 2. Катеты прямоугольного треугольника равны: ( small a=15 , ; b=3.) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (3). Подставим значения ( small a=15 , ; b=3) в (3):

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Ответ: Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Видео:КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Формула для вычисления радиуса окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника аналогична формуле вычисления радиуса описанной окружности около произвольного треугольника (см. статью на странице Радиус описанной окружности около треугольника онлайн):

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности(4)

Видео:Решение прямоугольных треугольниковСкачать

Решение прямоугольных треугольников

4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника

Пусть известны катет a и прилежащий острый угол B прямоугольного треугольника (Рис.4). Найдем радиус описанной окружности около треугольника.

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Так как треугольник прямоугольный, то сумма острых углов треугольника равна 90°:

( small angle A+angle B=90°. )
( small angle A=90°-angle B. )(5)

Подставляя (5) в (4), получим:

( small R=frac=frac) ( small =frac )
( small R=frac. )(6)

Пример 3. Катет прямоугольного треугольника равен: ( small a=15 ,) а прилежащий угол равен ( small angle B=25°. ) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (6). Подставим значения ( small a=15 , ; angle B=25° ) в (6):

Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

Ответ: Как найти гипотенузу прямоугольного треугольника если известен радиус описанной окружности

📸 Видео

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

8 класс, 39 урок, Описанная окружностьСкачать

8 класс, 39 урок, Описанная окружность

Треугольник и окружность #shortsСкачать

Треугольник и окружность #shorts

Найдите площадь прямоугольного треугольника, если сумма его катетов равна 15, а гипотенуза равна 13Скачать

Найдите площадь прямоугольного треугольника, если сумма его катетов равна 15, а гипотенуза равна 13

№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,Скачать

№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»

Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать

Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.
Поделиться или сохранить к себе: